

 [image: _images/banner.png]
[image: license]
 [https://opensource.org/licenses/Apache-2.0][image: codestyle]
 [https://github.com/psf/black][image: Documentation Status]
 [https://eagerx.readthedocs.io/en/master/?badge=master][image: Continuous Integration]
 [https://github.com/eager-dev/eagerx/actions/workflows/ci.yml][image: Test Coverage]
 [https://codeclimate.com/github/eager-dev/eagerx/test_coverage]

What is EAGERx

You can use EAGERx [https://github.com/eager-dev/eagerx] (Engine Agnostic Graph Environments for Robotics) to easily define new (Gymnasium compatible [https://gymnasium.farama.org/]) environments with modular robot definitions.

It enables users to:

	Define environments as graphs of nodes

	Visualize these graph environments interactively in a GUI

	Use a single graph environment both in reality and with various simulators

EAGERx explicitly addresses the differences in learning between simulation and reality, with native support for essential features such as:

	Safety layers and various other state, action and time-scale abstractions

	Delay simulation & domain randomization

	Real-world reset routines

	Synchronized parallel computation within a single environment

You can find the open-source code on Github [https://github.com/eager-dev/eagerx].

[image: _images/box_pushing_pybullet.gif]
[image: _images/pendulum_sim.gif]
[image: _images/crazyfly_sim.gif]
[image: _images/box_pushing_real.gif]
[image: _images/pendulum_real.gif]
[image: _images/crazyfly_real.gif]
Sim2Real: Policies trained in simulation and zero-shot evaluated on real systems using EAGERx.
On the left the successful transfer of a box-pushing policy is shown, in the middle for the classic pendulum swing-up problem and on the right a task involving the crazyfly drone.

[image: _images/all.gif]
Modular: The modular design of EAGERx allows users to create complex environments easily through composition.

[image: _images/gui.svg]GUI: Users can visualize their graph environment.
Here we visualize the graph environment that we built in this tutorial [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb].
See the documentation [https://eagerx.readthedocs.io/en/master/guide/getting_started/index.html#extras-gui] for more information.

Video

 Getting Started

Getting Started

Installing EAGERx

There are four installation options:

	Using pip

	From source

	Using docker

	Using conda and robostack

Installation using pip

You can do a minimal installation of EAGERx with:

pip3 install eagerx

Note

To make use of EAGERx’s distributed capabilities (e.g. running on different physical machines),
ROS1 should be installed and sourced.

Installation from source

Prerequisites: Install Poetry.

Clone the eagerx repository [https://github.com/eager-dev/eagerx] and go to its root:

git clone git@github.com:eager-dev/eagerx.git
cd eagerx

Install EAGERx:

poetry install

Verify installation:

poetry run python examples/example_openai.py

Note

To make use of EAGERx’s distributed capabilities (e.g. running on different physical machines),
ROS1 should be installed and sourced.

Installation using Docker (with distributed support)

Prerequisites: Install Docker [https://docs.docker.com/engine/install/] and for GPU dockers nvidia-docker [https://github.com/NVIDIA/nvidia-docker].

In total, four docker images are available with EAGERx installed, i.e. two with a minimal installation of EAGERx and its dependencies (CPU and GPU) and two with Stable Baselines 3 [https://stable-baselines3.readthedocs.io/en/master/index.html] installed as well (CPU and GPU).
The dockers with Stable Baselines 3 also come with tutorials on EAGERx [https://github.com/eager-dev/eagerx_tutorials].

Note

All docker images natively support EAGERx’s distributed capabilities (e.g. running on different physical machines).

GPU Dockers

The GPU dockers require nvidia-docker [https://github.com/NVIDIA/nvidia-docker] and can be pulled as follows:

sudo docker pull eagerx/eagerx

or with Stable Baselines 3 and the tutorials [https://github.com/eager-dev/eagerx_tutorials]:

sudo docker pull eagerx/eagerx-sb

The docker image can be run as follows:

sudo docker run -it --rm --gpus all [image]

where [image] should be replaced with eagerx/eagerx or eagerx/eagerx-sb.

Verify that EAGERx is installed:

python -c 'import eagerx'

CPU Dockers

The CPU only dockers can be pulled as follows:

sudo docker pull [image]

where image should be replaced with eagerx/eagerx-cpu or eagerx/eagerx-sb-cpu.

Run the image with the command

sudo docker run -it --rm [image]

where image should be replaced with eagerx/eagerx-cpu or eagerx/eagerx-sb-cpu.

Verify that EAGERx is installed:

python -c 'import eagerx'

Installation Using Conda (with distributed support)

You first need to download and install Conda [https://github.com/conda-forge/miniforge] (we recommend the miniforge distribution).

Then, follow the instructions of RoboStack [https://robostack.github.io/GettingStarted.html] to install ROS1:

if you don't have mamba yet, install it first (not needed when using mambaforge):
conda install mamba -c conda-forge

now create a new environment
mamba create -n ros_env python=3.8
conda activate ros_env

this adds the conda-forge channel to the new created environment configuration
conda config --env --add channels conda-forge
and the robostack channels
conda config --env --add channels robostack
conda config --env --add channels robostack-experimental

Install the version of ROS you are interested in:
mamba install ros-noetic-desktop

optionally, install some compiler packages if you want to e.g. build packages in a colcon_ws:
mamba install compilers cmake pkg-config make ninja colcon-common-extensions

on Linux and osx (but not Windows) for ROS1 you might want to:
mamba install catkin_tools

on Windows, install Visual Studio 2017 or 2019 with C++ support
see https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=msvc-160

on Windows, install the Visual Studio command prompt:
mamba install vs2019_win-64

note that in this case, you should also install the necessary dependencies with conda/mamba, if possible

IMPORTANT! reload environment to activate required scripts before running anything
on Windows, please restart the Anaconda Prompt / Command Prompt!
conda deactivate
conda activate ros_env

if you want to use rosdep, also do:
mamba install rosdep
rosdep init # IMPORTANT: do not use sudo!
rosdep update

Finally, you can activate your ros_env and install EAGERx:

conda activate ros_env
pip install eagerx

We also provide a Conda environment file which contains ROS1, EAGERx, SB3 and other EAGERx packages. In that case you simply have to do:

conda env create -f ros_env.yml

Extras: GUI

To install the whole set of features, you will need additional packages.
There is for example a package available for visualizing the Graph and the EngineGraph.

You can install the gui by running:

pip3 install eagerx-gui

Note

The EAGERx docker images currently do not support gui functionality.

[image: alternate text]
The visualisation of an environment via the GUI.

Extras: training visualization

In robotics it is crucial to monitor the robot’s behavior during the learning process.
Luckily, all inter-node communication within EAGERx can be listened to externally, so that any relevant information stream can be trivially monitored on-demand (e.g. with rqt_plot).
For this, the user must select the Ros1 Backend.

Note

rqt_plot is included in the desktop or desktop-full ROS1 installation.
See here for installation instructions.
The docker images do not support visualization using rqt_plot.

[image: alternate text]

Live plot of the x, y, and z coordinate of the end effector using rqt_plot.

Other Dependencies

Below you find instructions for installing dependencies (optionally) required by EAGERx.

Poetry

Poetry is a tool for dependency management and packaging in Python.
It allows you to declare the libraries your project depends on and it will manage (install/update) them for you.
We advise contributors to use this tool when developing an EAGERx package to leverage the pre-build CI workflow we have setup in the template package.
However, this is not a requirement and a simple pip install to install all eagerx package dependencies into your project’s (virtual) Python environment will also work.

For installation on osx / linux / bashonwindows, simply run:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -

For more installation instructions, see here [https://python-poetry.org/docs/#installation].

ROS1

See the ROS1 Installation Options [http://wiki.ros.org/ROS/Installation], or do the following.
By replacing <DISTRO> with the supported ROS1 distributions (noetic, melodic),
and <PACKAGE> with the installation type (ros-base, desktop, desktop-full),
a minimal ROS1 installation can be installed with:

Warning

Currently, eagerx only supports ROS1. ROS2 support will be added in future versions.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt install curl # if you haven't already installed curl
curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -
sudo apt update
sudo apt install ros-<DISTRO>-<PACKAGE>
sudo apt-get install ros-<DISTRO>-cv-bridge

Make sure to source /opt/ros/<DISTRO>/setup.bash in the environment where you intend to eagerx in.
It can be convenient to automatically source this script every time a new shell is launched.
These commands will do that for you if you:

echo "source /opt/ros/<DISTRO>/setup.bash" >> ~/.bashrc
source ~/.bashrc

In case you make use of a virtual environment, move to the directory containing the .venv and
add source /opt/ros/<DISTRO>/setup.bash to the activation script before activating the environment with
this line:

echo "source /opt/ros/<DISTRO>/setup.bash" >> .venv/bin/activate

 Tutorials

Tutorials

A set of tutorials is created to showcase some of the key features of EAGERx and to guide users through the process of using EAGERx for robot learning tasks.
Most of them are available in the form of Google Colabs in the eagerx_tutorials package [https://github.com/eager-dev/eagerx_tutorials].
We will briefly introduce these tutorials in the following sections.
Furthermore, a tutorial on how to visualize training using EAGERx is available.

	Colabs
	Introduction to EAGERx

	Developer Tutorials

	Visualizing your environment
	Graphical user interface

	Live-plotting

	Computation graph

	Distributed

 Colabs

Colabs

Introduction to EAGERx

The best way to get introduced to EAGERx is to play around with the [image: colab] tutorials that are available.
They also contain exercises that address common challenges of robotic reinforcement learning and how to overcome them using EAGERx.

The following introductory tutorials are available:

	Tutorial 1: Getting started [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/getting_started.ipynb]

	Tutorial 2: Advanced usage [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb]

The solutions are available in here [https://github.com/eager-dev/eagerx_tutorials/tree/master/tutorials/icra/solutions/].

[image: alternate text]

In the advanced usage tutorial you will learn a quadruped to walk in circles within four minutes of training.

1. Getting Started

This tutorial covers:

	constructing a Graph and an environment using BaseEnv,

	switching between different Engine,

	performing domain randomization.

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/getting_started.ipynb]

2. Advanced Usage

In this notebook, you will learn to use EAGERx to create a gym-compatible environment.
This tutorial covers:

	how to initialize a robot (Go 1 Quadruped Robot).

	how to add pre-processing nodes (i.e. low-level controllers).

	how to fine-tune low-level controllers to achieve the desired behavior.

	how to (de)select various sensors to investigate its effect on the learning performance.

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb]

Developer Tutorials

Next to the introduction tutorials, a set of developer tutorials is also available:

	Tutorial 1: Environment Creation and Training with EAGERx [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb]

	Tutorial 2: Reset and Step [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/2_reset_and_step.ipynb]

	Tutorial 3: Space and Processors [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/3_space_and_processors.ipynb]

	Tutorial 4: Nodes and Graph Validity [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/4_nodes.ipynb]

	Tutorial 5: Adding Engine Support for an Object [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/5_engine_implementation.ipynb]

	Tutorial 6: Defining a new Object [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_objects.ipynb]

	Tutorial 7: More Informative Rendering [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/7_rendering.ipynb]

	Tutorial 8: Reset Routines [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/8_reset_routine.ipynb]

The solutions are available in here [https://github.com/eager-dev/eagerx_tutorials/tree/master/tutorials/pendulum/solutions/].

[image: alternate text]

The tutorials cover common challenges of robotic reinforcement learning and how to overcome them using EAGERx.
The classic control problem of swinging up an underactuated pendulum is used as an example.

1. Environment Creation and Training

This tutorial covers:

	Creating a Graph with an Object.

	How to use this Graph and a Engine to create an BaseEnv.

	How to train a policy with the BaseEnv.

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb]

2. Reset and Step

This tutorial covers:

	Extracting observations in the step

	Resetting states using reset()

	The window argument of the connect() method

	Simulating delays using the delay argument of the connect() method

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/2_reset_and_step.ipynb]

3. Space and Processors

This tutorial covers:

	How to specify a Space

	Creating a custom Processor

	How to add a Processor

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/3_space_and_processors.ipynb]

4. Nodes and Graph Validity

This tutorial covers:

	Creating a Node

	Adding a Node to the Graph

	Checking the validity of the Graph

	How to make the Graph valid (DAG)

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/4_nodes.ipynb]

5. Adding Engine Support for an Object

This tutorial covers:

	Adding an engine-specific implementation to an Object

	Initializing the corresponding Engine

	Train with the newly added engine-specific implementation

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/5_engine_implementation.ipynb]

6. Defining a new Object

This tutorial covers:

	Defining a new Object

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_objects.ipynb]

7. More Informative Rendering

	Create a layover Node that augments a raw image sensors

	Connect the layover Node and use it for rendering

	Demonstrate that rendering is agnostic to the selected physics-engine

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_rendering.ipynb]

8. Reset Routines

	Defining the reset routine with a ResetNode

	Reset the Object’s with the reset routine.

[image: ../../_images/colab-badge.svg]
 [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/7_reset_routine.ipynb]

 Visualizing your environment

Visualizing your environment

In this tutorial we will demonstrate how you can use EAGERx to visualize parts of your environment.

EAGERx has a built-in GUI to visualize your environment. Moreover, as EAGERx
is build on top of ROS you can use many of the support ROS tools. These tools can give valuable insights on the workings of
your environment.

Note

The ROS tools we cover in this tutorial (e.g. rqt_plot) are per default included in the desktop and
desktop-full ROS installation.

The tools can be manually installed with the lines below. Replace <DISTRO> with the supported ROS distributions
(noetic, melodic).

sudo apt-get install ros-<DISTRO>-rqt
sudo apt-get install ros-<DISTRO>-rqt-common-plugins

Graphical user interface

After creating the Graph for our environment, we can inspect it using the GUI [https://github.com/eager-dev/eagerx_gui]. Note that we need to install it first if you haven’t done so yet:

pip install eagerx-gui

Next, we can open it by calling gui():

graph.gui()

By clicking on Show Graph, we can inspect the graph in the GUI.
The output you will see should look something like this:

[image: alternate text]

Screenshot of the EAGERx GUI.

The GUI also provides functionalities for constructing a Graph.
So we could also have created the exact same Graph from scratch using the GUI.

This is demonstrated in the video below:

[image: alternate text]

The construction of an environment via the GUI.

Live-plotting

Note

Live-plotting is currently only supported when the Ros1 Backend is selected.

In robotics it is crucial to monitor the robot’s behavior during the learning process.
Luckily, inter-node communication within EAGERx can always be listened to externally,
so that any relevant information stream can be trivially monitored on-demand.

Inter-node communication within EAGERx is always advertised as a topic that can be listened to externally, even
when nodes are interconnected within the same process. Therefore, we can leverage existing tools from ROS such as rqt_plot.
rqt_plot provides a GUI plugin visualizing numeric values in a 2D plot using different plotting backends.
See here [http://wiki.ros.org/rqt_plot] for more details on this tool.

Topic addresses for outputs follow the naming convention:

	<env_name>/<node_name>/outputs/<cname>: (e.g. /rx/controller/outputs/reference).

rqt_plot /rx/viper/sensors/ee_pos/data[0]:data[1]:data[2]

This will open a live-plot of the x, y, and z coordinate of the end effector similar to the one below.

[image: alternate text]

Live plot of the x, y, and z coordinate of the end effector using rqt_plot.

Note

The computational overhead of publishing all node outputs as topics is minimal when there are no
subscribers. In other words, there is only computational overhead when external source (e.g. rqt_plot) is
listening to the advertised topics. Once the external source unsubscribes, the overhead is again reduced.

Computation graph

rqt_graph is a ROS tool that provides a GUI plugin for visualizing what’s going in the ROS computation graph that EAGERx
creates for you based on the nodes, objects, and their interconnections.

To visualize the graph, you can run the following command in a separate terminal while your
environment is running:

rosparam set enable_statistics true
rqt_graph

This will provide you with an overview similar to the one below:

[image: alternate text]

The ROS computation graph that EAGERx creates for you.

In the top left, you can refresh to update statistics about the messages that are passed in the graph. Also you can select
what to visualize:

	Nodes only: This will only show the communication (i.e. topics) between nodes that were launched as a NEW_PROCESS.

	Nodes/Topics (active): This will show all communication (i.e. topics) that are currently active.

	Nodes/Topics (all): This will show all communication (i.e. topics).

 Distributed

Distributed

To launch a node or engine externally on, for example, a different physical machine, you must set its process to
EXTERNAL. See process for more info.
In this case, you as a user are responsible for launching the node/engine.

Note

When using the Ros1 Backend for running across multiple machines,
please make sure that the ROS_MASTER_URI is correctly configured on every machine.
See here [http://wiki.ros.org/ROS/Tutorials/MultipleMachines] for more info.

You will have to pass the following arguments

	Path to the appropriate executable python script (executable_node.py for nodes, executable_engine.py for engines).

	--backend: Backend that was selected for the environment (e.g. eagerx.backends.ros1/Ros1 or eagerx.backends.single_process/SingleProcess).

	--loglevel: The desired log level (as an integer). See constants for more info.

	--env: The environment name.

	--name: The name of the node/engine. For engines, the name is always engine.
If the node is part of an engine-specific implementation of an object, the node name is <object_name>/<node_name>.

For nodes, an example would look like:

python3 <path>/<to>/<package>/eagerx/core/executable_node.py --backend eagerx.backends.ros1/Ros1 --loglevel 20 --env CamEnv --name obj/camera_api

For an engine, an example would look like:

python3 <path>/<to>/<package>/eagerx/core/executable_engine.py --backend eagerx.backends.ros1/Ros1 --loglevel 20 --env CamEnv --name engine

 API Reference

API Reference

	Engine
	Engine

	Backend
	Backend

	Processor
	Processor

	Engine State
	EngineState

	Nodes
	Node

	Engine Node

	Reset Node

	Object
	Object

	Specs
	Engine

	Backend

	Processor

	Engine State

	Node

	Reset Node

	Object

	Graph
	Graph

	Engine Graph

	Environment
	BaseEnv

	Utilities
	Space

	Process

	Register

	Message

 Engine

Engine

	
class eagerx.core.entities.Engine(sync, real_time_factor, params, target_addresses, node_names, *args, **kwargs)

	Baseclass for engines.

Use this baseclass to implement an engine that interfaces the simulator.

Users must call make() to make the engine subclass’ specification.

Subclasses must implement the following methods:

	make()

	initialize()

	add_object()

	pre_reset()

	reset()

	callback()

	shutdown() (optional)

	
abstract add_object(name, *args, **kwargs)

	Adds an object to the simulator that is interfaced by the engine.

	Parameters:

	
	name (str) – The name of the Object that is to be added.

	args (Union[bool, int, float, str, List, Dict]) – The engine-specific parameters that are required to add the Object.

	kwargs (Union[bool, int, float, str, List, Dict]) – The engine-specific parameters that are optional to add the Object.

	Return type:

	None

	
abstract callback(t_n)

	The engine callback that is performed at the specified rate.

This callback is steps the simulator by 1/rate.

Note

The engine does not have any outputs.
If you wish to broadcast other output messages based on properties of the simulator,
a separate EngineNode should be created.

	Parameters:

	t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

	Return type:

	None

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec)

	An abstract method that initializes the node at run-time.

	Parameters:

	spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the node/engine.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
abstract pre_reset(**states)

	An abstract method that resets the engine to its initial state before the start of an episode.

Note

This method is called before every EngineNode and
EngineState has performed its reset,
but after all reset routines, implemented with ResetNode,
have reached their target.

	Can be useful for performing some preliminary actions on the simulator such as pausing before resetting
every EngineNode and EngineState.

	Reset the simulator state so that this state can be used in the reset of every
EngineNode and EngineState.

	Parameters:

	states (Any) – States that were registered (& selected) with the eagerx.core.register.states() decorator by the subclass.
The state messages are sent by the environment and can be used to reset the engine at the start of an episode.
This can be anything, such as the dynamical properties of the simulator (e.g. friction coefficients).

	Return type:

	None

	
abstract reset(**states)

	An abstract method that resets the engine to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Note

This method is called after every EngineNode and
EngineState has finished its reset.

	Can be useful for performing some final actions on the simulator such as unpausing after every
EngineNode and EngineState have reset.

	Parameters:

	states (Any) – States that were registered (& selected) with the eagerx.core.register.states() decorator by the subclass.
The state messages are sent by the environment and can be used to reset the engine at the start of an episode.
This can be anything, such as the dynamical properties of the simulator (e.g. friction coefficients).

	Return type:

	None

	
shutdown()

	A method that can be overwritten to cleanly shutdown (e.g. release resources).

	Return type:

	None

	
backend: Backend

	Responsible for all I/O communication within this process.
Nodes inside the same process share the same message broker. Cannot be modified.

	
entity_id: str

	A unique entity_id with the structure <module>/<classname>.

	
log_level: int

	Specifies the log level for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Can be set in the subclass’ spec().

	
log_memory: int

	Specifies the log level for logging memory usage over time for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Note that log_level has precedent over the memory level set here.
Can be set in the subclass’ spec().

	
name: str

	User specified node name. Can be set in spec().

	
ns: str

	Namespace of the environment. Can be set with the name argument to BaseEnv.

	
objects: dict

	Parameters for all objects.

	
process: int

	Process in which this node is launched. See process for all options.
Can be set in the subclass’ spec().

	
rate: float

	Rate (Hz) at which the callback is called.
Can be set in the subclass’ spec().

	
real_time_factor: float

	A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate.
If real_time_factor < 1 the simulation is slower than real time.
Can be set in the engine’s spec().

	
simulate_delays: bool

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.
Can be set in the engine’s spec().

	
simulator: Any

	The simulator object. The simulator depends on the engine and should be initialized in the
initialize() method. Oftentimes, engine nodes require a reference in
callback() and/or reset()
to this simulator object to simulate (e.g. apply an action, extract a sensor measurement).
Engine nodes only have this reference if the node was launched inside the engine process.
See process for more info.

	
states: dict

	Parameters for all selected states.

	
sync: bool

	Flag that specifies whether we run reactive or asynchronous.
Can be set in the engine’s spec().

 Backend

Backend

	
class eagerx.core.entities.Backend(ns, backend_type, entity_id, log_level, main=False, sync=None, real_time_factor=None, simulate_delays=None, **kwargs)

	Baseclass for backends.

Use this baseclass to implement backends that implement the communication.

Users must use make() to make the registered subclass’ specification.

Subclasses must implement the following methods:

	make()

	initialize()

	Publisher()

	Subscriber()

	register_environment()

	delete_param()

	upload_params()

	get_param()

	spin()

Subclasses must set the following static class properties:

	BACKEND

	DISTRIBUTED_SUPPORT

	MULTIPROCESSING_SUPPORT

	COLAB_SUPPORT

	
abstract Publisher(address, dtype)

	Creates a publisher.

	Parameters:

	
	address (str) – Topic name.

	dtype (str) – Dtype of message in string format (e.g. float32).

	Return type:

	Publisher

	
abstract Subscriber(address, dtype, callback, header=False, callback_args=())

	Creates a subscriber.

	Parameters:

	
	address (str) – Topic name.

	dtype (str) – Dtype of message in string format (e.g. float32).

	callback – Function to call (fn(data)) when data is received. If callback_args is set, the function
must accept the callback_args as positional args, i.e. fn(data, header, *callback_args).

	header (bool) – Set to True if the callback accepts the header as the second positional argument.

	callback_args (Optional[Tuple]) – Additional arguments to pass to the callback.

	Return type:

	Subscriber

	
abstract delete_param(param, level=1)

	Deletes params from the parameter server.

	Parameters:

	
	param (str) – Parameter name.

	level (int) – Determines what to do when the param does not exist:

	0=error: Raises a BackendException.

	1=warn: logs a warning and returns None.

	2=pass: passes silently and returns None.

	Return type:

	None

	
static deserialize_time(secs, nsecs)

	Convert a secs and nsecs time instance into float time in seconds .

Should be used when manually setting secs/nsecs slot values for deserialization.

	Return type:

	float

	
abstract get_param(name, default=<eagerx.core.constants.Unspecified object>)

	Retrieve a parameter from the param server

	Parameters:

	
	name (str) – Parameter name.

	default (Any) – Default value to return.

	Return type:

	Union[Dict, List, bool, float, int, str]

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec)

	An abstract method to initialize the backend.

	Parameters:

	spec (BackendSpec) – Specification of the node/engine.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
now()

	Get the current times according to the simulated and wall clock

	Return type:

	Tuple[float, float]

	
abstract register_environment(name, force_start, fn)

	Checks if environment already exists and shuts it down if force_restart is set. Then, it registers
the remote shutdown procedure for the newly created environment.

	Parameters:

	
	name (str) – Environment name (i.e. namespace of the environment).

	force_start (bool) – Whether to shutdown any environment with the same name if it already exists.

	fn (Callable) – Function with zero args to be called on remote shutdown.

	Return type:

	ShutdownService

	
static serialize_time(t)

	Convert a float time instance (in seconds) into secs and nsecs.

Should be used when manually setting secs/nsecs slot values for serialization.

	Return type:

	Tuple[int, int]

	
shutdown()

	Shuts down the backend

	Return type:

	None

	
abstract spin()

	Blocks until node is shutdown. Yields activity to other threads.

	Return type:

	None

	
abstract upload_params(ns, values, verbose=False)

	Upload params to the parameter server.

	Parameters:

	
	ns (str) – Namespace to load parameters into, str.

	values (Dict[str, Union[Dict, List, bool, float, int, str]]) – Key/value dictionary, where keys are parameter names and values are parameter values, dict.

	verbose (bool) – Verbosity level.

	Return type:

	None

	
abstract property BACKEND: str

	Backend name in string format.

	
abstract property COLAB_SUPPORT: bool

	Whether the backend supports running on Google colab.

	
abstract property DISTRIBUTED_SUPPORT: bool

	Whether nodes can be launched on external platforms (i.e. distributed communication).

	
abstract property MULTIPROCESSING_SUPPORT: bool

	Whether nodes can be launched as separate processes.

	
backend_type: str

	The class definition of the subclass. Follows naming convention <module>/<BackendClassName>.
Cannot be modified.

	
entity_id: str

	A unique entity_id with the structure <module>/<classname>.

	
log_level: int

	Specifies the effective log level:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Can be set in the subclass’ spec().

	
main: bool

	If True, the backend is the ‘main` backend that corresponds to the environment process.

	
ns: str

	Namespace of the environment. Can be set with the name argument to BaseEnv.

	
real_time_factor: float

	A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate.
If real_time_factor < 1 the simulation is slower than real time.

	
simulate_delays: bool

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.

	
sync: bool

	Flag that specifies whether we run synchronous or asynchronous.

 Processor

Processor

	
class eagerx.core.entities.Processor

	Baseclass for processors.

Use this baseclass to implement processor that preprocess an input/output message.

This baseclass only supports one-way processing.

Users must call make() to make the subclass’ specification.

Subclasses must implement the following methods:

	make()

	initialize()

	convert()

	
abstract convert(msg)

	An abstract method to preprocess messages.

	Parameters:

	msg (Any) – Raw message.

	Return type:

	Any

	Returns:

	Preprocessed message.

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec)

	An abstract method to initialize the processor.

	Parameters:

	spec (ProcessorSpec) – Specification of the processor.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

 Engine State

Engine State

	
class eagerx.core.entities.EngineState(ns, name, simulator, backend, params)

	Baseclass for engine states.

Use this baseclass to implement engine states for an Object.

Users must call make() to make the subclass’ specification.

Subclasses must implement the following methods:

	make()

	initialize()

	reset()

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec, simulator)

	An abstract method to initialize the engine state.

	Parameters:

	
	spec (EngineStateSpec) – The engine state specification.

	simulator (Any) – A reference to the engine’s simulator.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
abstract reset(state)

	An abstract method to reset the engine state of an Object.

	Parameters:

	state (Any) – The desired state that the user can specify before calling reset().

	Return type:

	None

	
backend

	Responsible for all I/O communication within this process.

	
name

	Name of the state.

	
ns

	Namespace of the environment. Can be set with the name argument to BaseEnv.

 Nodes

Nodes

Table of Contents

	Node
	Node

	Engine Node
	EngineNode

	Reset Node
	ResetNode

 Node

Node

	
class eagerx.core.entities.Node(ns, message_broker, sync, real_time_factor, simulate_delays, params, call_init=True)

	Baseclass for nodes.

Use this baseclass to implement nodes that will be added to the (agnostic) Graph.

Users must call make() to make the node subclass’ specification.

Subclasses must implement the following methods:

	make()

	initialize()

	reset()

	callback()

	shutdown() (optional)

Use baseclass EngineNode instead, for nodes that will be added to
EngineGraph when specifying an engine implementation for an Object.

Use baseclass ResetNode instead, for reset routines.

	
abstract callback(t_n, **inputs)

	An abstract method that is called at the specified node rate.

This method should be decorated with:

	eagerx.core.register.inputs() to register the inputs.

	eagerx.core.register.outputs() to register the outputs.

	Parameters:

	
	t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

	inputs (Msg) – Inputs that were registered (& selected) with the eagerx.core.register.inputs() decorator by the subclass.

	Return type:

	Dict[str, Any]

	Returns:

	Dictionary with outputs that were registered (& selected) with the eagerx.core.register.outputs() decorator by the subclass.

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec)

	An abstract method that initializes the node at run-time.

	Parameters:

	spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the node/engine.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
abstract reset(**states)

	An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

	Parameters:

	states (Any) – States that were registered (& selected) with the eagerx.core.register.states() decorator by the subclass.
The state messages are sent by the environment and can be used to reset the node at the start of an episode.
This can be anything from an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

	Return type:

	None

	
set_delay(delay, component, cname)

	A method to vary the delay of an input or feedthrough.

	Parameters:

	
	delay (float) – A non-negative delay that can be varied at the beginning of an episode (during the reset procedure).

	component (str) – Either “inputs” or “feedthroughs”.

	cname (str) – name of the component.

	Return type:

	None

	
shutdown()

	A method that can be overwritten to cleanly shutdown (e.g. release resources).

	Return type:

	None

	
backend: Backend

	Responsible for all I/O communication within this process.
Nodes inside the same process share the same message broker. Cannot be modified.

	
color: str

	Specifies the color of logged messages & node color in the GUI.
Check-out the termcolor documentation for the supported colors.
Can be set in the subclass’ spec().

	
entity_id: str

	A unique entity_id with the structure <module>/<classname>.

	
inputs: dict

	Parameters for all selected inputs.

	
log_level: int

	Specifies the log level for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Can be set in the subclass’ spec().

	
log_memory: int

	Specifies the log level for logging memory usage over time for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Note that log_level has precedent over the memory level set here.
Can be set in the subclass’ spec().

	
name: str

	User specified node name. Can be set in spec().

	
ns: str

	Namespace of the environment. Can be set with the name argument to BaseEnv.

	
outputs: dict

	Parameters for all selected outputs.

	
process: int

	Process in which this node is launched. See process for all options.
Can be set in the subclass’ spec().

	
rate: float

	Rate (Hz) at which the callback is called.
Can be set in the subclass’ spec().

	
real_time_factor: float

	A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate.
If real_time_factor < 1 the simulation is slower than real time.
Can be set in the engine’s spec().

	
simulate_delays: bool

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.
Can be set in the engine’s spec().

	
states: dict

	Parameters for all selected states.

	
sync: bool

	Flag that specifies whether we run reactive or asynchronous.
Can be set in the engine’s spec().

 Engine Node

Engine Node

	
class eagerx.core.entities.EngineNode(params, *args, simulator=None, message_broker=None, **kwargs)

	Baseclass for nodes that are only to be used in combination with a specific engine.

Users must call make() to make the engine node subclass’ specification.

Use this baseclass to implement nodes that will be added to an EngineGraph
when specifying an engine implementation for an Object.

These nodes can, optionally, be synchronized with respect to the simulator clock by registering “tick” as an input.

Note

Engine nodes only receive a reference to the simulator as an
argument to initialize() when the engine nodes are launched within
the same process as the engine. See process for more info.

Subclasses must implement the following methods:

	make()

	initialize()

	reset()

	callback()

	shutdown() (optional)

Use baseclass Node instead, for nodes that will be added to the
(agnostic) Graph.

Use baseclass ResetNode instead, for reset routines.

	
abstract callback(t_n, **inputs)

	An abstract method that is called at the specified node rate.

This method should be decorated with:

	eagerx.core.register.inputs() to register the inputs.

	eagerx.core.register.outputs() to register the outputs.

	Parameters:

	
	t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

	inputs (Msg) – Inputs that were registered (& selected) with the eagerx.core.register.inputs() decorator by the subclass.

	Return type:

	Dict[str, Any]

	Returns:

	Dictionary with outputs that were registered (& selected) with the eagerx.core.register.outputs() decorator by the subclass.

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec, simulator)

	An abstract method that initializes the node at run-time.

	Parameters:

	
	spec (NodeSpec) – Specification of the engine node.

	simulator (Any) – A reference to the simulator. The simulator type depends
on the engine. Only available if the node was launched inside the engine process.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
abstract reset(**states)

	An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Warning

Avoid defining states for engine nodes, as you risk making your Object
non-agnostic to the environment. Instead, try to implement object states as an EngineState
of an Object.

	Parameters:

	states (Any) – States that were registered (& selected) with the eagerx.core.register.states() decorator by the subclass.
The state messages are sent by the environment and can be used to reset the node at the start of an episode.
This can be anything from an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

	Return type:

	None

	
set_delay(delay, component, cname)

	A method to vary the delay of an input or feedthrough.

	Parameters:

	
	delay (float) – A non-negative delay that can be varied at the beginning of an episode (during the reset procedure).

	component (str) – Either “inputs” or “feedthroughs”.

	cname (str) – name of the component.

	Return type:

	None

	
shutdown()

	A method that can be overwritten to cleanly shutdown (e.g. release resources).

	Return type:

	None

	
backend: Backend

	Responsible for all I/O communication within this process.
Nodes inside the same process share the same message broker. Cannot be modified.

	
color: str

	Specifies the color of logged messages & node color in the GUI.
Check-out the termcolor documentation for the supported colors.
Can be set in the subclass’ spec().

	
entity_id: str

	A unique entity_id with the structure <module>/<classname>.

	
inputs: dict

	Parameters for all selected inputs.

	
log_level: int

	Specifies the log level for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Can be set in the subclass’ spec().

	
log_memory: int

	Specifies the log level for logging memory usage over time for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Note that log_level has precedent over the memory level set here.
Can be set in the subclass’ spec().

	
name: str

	User specified node name. Can be set in spec().

	
ns: str

	Namespace of the environment. Can be set with the name argument to BaseEnv.

	
outputs: dict

	Parameters for all selected outputs.

	
process: int

	Process in which this node is launched. See process for all options.
Can be set in the subclass’ spec().

	
rate: float

	Rate (Hz) at which the callback is called.
Can be set in the subclass’ spec().

	
real_time_factor: float

	A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate.
If real_time_factor < 1 the simulation is slower than real time.
Can be set in the engine’s spec().

	
simulate_delays: bool

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.
Can be set in the engine’s spec().

	
states: dict

	Parameters for all selected states.

	
sync: bool

	Flag that specifies whether we run reactive or asynchronous.
Can be set in the engine’s spec().

 Reset Node

Reset Node

	
class eagerx.core.entities.ResetNode(params, *args, **kwargs)

	Baseclass for nodes that perform a reset routine.

Use this baseclass to implement reset nodes that will be added to the (agnostic) Graph.

Users must call make() to make the reset node subclass’ specification.

Note

Subclasses must always have at least one target registered with the eagerx.core.register.targets() decorator.

Subclasses must implement the following methods:

	make()

	initialize()

	reset()

	callback()

	shutdown() (optional)

Use baseclass EngineNode instead, for nodes that will be added to
EngineGraph when specifying an engine implementation for an Object.

Use baseclass Node instead, for regular nodes that will be added to the
agnostic Graph.

	
abstract callback(t_n, **inputs_and_targets)

	An abstract method that is called at the specified node rate during the environment reset.

This method should be decorated with:

	eagerx.core.register.inputs() to register the inputs.

	eagerx.core.register.outputs() to register the outputs.

	eagerx.core.register.targets() to register the targets.

Note

This callback is skipped until the user calls reset().
Until then, the messages coming in via the connected feedthroughs are fed through as
the outputs instead. For every registered output that was registered (& selected) with the
eagerx.core.register.outputs() decorator by the subclass, there must be a connected feedthrough.

	Parameters:

	
	t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

	inputs_and_targets (Msg) – Inputs and targets that were registered (& selected) with the eagerx.core.register.inputs()
and eagerx.core.register.targets() decorators by the subclass.

	Return type:

	Dict[str, Any]

	Returns:

	Dictionary with outputs that were registered (& selected) with the eagerx.core.register.outputs()
decorator by the subclass. In addition, the dictionary must contain message of type bool
that specifies whether the requested target was reached.

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract initialize(spec)

	An abstract method that initializes the node at run-time.

	Parameters:

	spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the node/engine.

	Return type:

	None

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this entity.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, engine, …).

	
abstract reset(**states)

	An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

	Parameters:

	states (Any) – States that were registered (& selected) with the eagerx.core.register.states() decorator by the subclass.
The state messages are sent by the environment and can be used to reset the node at the start of an episode.
This can be anything from an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

	Return type:

	None

	
set_delay(delay, component, cname)

	A method to vary the delay of an input or feedthrough.

	Parameters:

	
	delay (float) – A non-negative delay that can be varied at the beginning of an episode (during the reset procedure).

	component (str) – Either “inputs” or “feedthroughs”.

	cname (str) – name of the component.

	Return type:

	None

	
shutdown()

	A method that can be overwritten to cleanly shutdown (e.g. release resources).

	Return type:

	None

	
backend: Backend

	Responsible for all I/O communication within this process.
Nodes inside the same process share the same message broker. Cannot be modified.

	
color: str

	Specifies the color of logged messages & node color in the GUI.
Check-out the termcolor documentation for the supported colors.
Can be set in the subclass’ spec().

	
entity_id: str

	A unique entity_id with the structure <module>/<classname>.

	
feedthroughs: dict

	Parameters for all feedthroughs corresponding to the selected outputs.

	
inputs: dict

	Parameters for all selected inputs.

	
log_level: int

	Specifies the log level for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Can be set in the subclass’ spec().

	
log_memory: int

	Specifies the log level for logging memory usage over time for this node:
{0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.
Note that log_level has precedent over the memory level set here.
Can be set in the subclass’ spec().

	
name: str

	User specified node name. Can be set in spec().

	
ns: str

	Namespace of the environment. Can be set with the name argument to BaseEnv.

	
outputs: dict

	Parameters for all selected outputs.

	
process: int

	Process in which this node is launched. See process for all options.
Can be set in the subclass’ spec().

	
rate: float

	Rate (Hz) at which the callback is called.
Can be set in the subclass’ spec().

	
real_time_factor: float

	A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate.
If real_time_factor < 1 the simulation is slower than real time.
Can be set in the engine’s spec().

	
simulate_delays: bool

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.
Can be set in the engine’s spec().

	
states: dict

	Parameters for all selected states.

	
sync: bool

	Flag that specifies whether we run reactive or asynchronous.
Can be set in the engine’s spec().

	
targets: dict

	Parameters for all selected targets.

 Object

Object

	
class eagerx.core.entities.Object

	Baseclass for objects.

Use this baseclass to implement objets that consist of sensors, actuators, and/or engine states.

Users must call make() to make the object subclass’ specification.

Subclasses must implement the following methods:

	make()

For every supported Engine, an implementation method must be added.
This method must have the same signature as example_engine():

	pybullet() (example)

	ode_engine() (example)

	…

	
example_engine(spec, graph)

	An example of an engine-specific implementation of an object’s registered sensors, actuators, and/or states.

See engine how engine specific parameters can be set/get.

This method must be decorated with eagerx.core.register.engine() to register
the engine implementation of the object.

Note

This is an example method for documentation purposes only.

	Parameters:

	
	spec (ObjectSpec) – A (mutable) specification.

	graph (EngineGraph) – A graph containing the object’s registered (disconnected) sensors & actuators.
Users should add nodes that inherit from EngineNode, and connect
them to the sensors & actuators. As such, the engine nodes become the engine-specific implementation
of the agnostic sensors & actuator definition.

	Return type:

	None

	
classmethod info(method=None)

	A helper method to get info on a method of the specified subclass.

	Parameters:

	method (Union[List[str], str, None]) – The registered method we would like to receive info on. If no method is specified, it provides info on
the class itself.

	Return type:

	str

	Returns:

	Info on the subclass’ method.

	
abstract classmethod make(*args, **kwargs)

	An abstract method that makes the specification (also referred to as spec) of this object.

See ObjectSpec how sensor/actuator/engine state parameters can be set.

This method should be decorated with:

	eagerx.core.register.sensors() to register sensors.

	eagerx.core.register.actuators() to register actuators.

	eagerx.core.register.engine_states() to register engine states.

	Parameters:

	
	args (Any) – Arguments to the subclass’ make function.

	kwargs (Any) – Optional Arguments to the subclass’ make function.

	Returns:

	A (mutable) spec that can be used to build and subsequently initialize the entity (e.g. node, object, …).

 Specs

Specs

Table of Contents

	Engine
	EngineSpec

	Backend
	BackendSpec

	Processor
	ProcessorSpec

	Engine State
	EngineStateSpec

	Node
	NodeSpec

	Reset Node
	ResetNodeSpec

	Object
	ObjectSpec

 Engine

Engine

	
class eagerx.core.specs.EngineSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the engine.

	
add_object(name, **kwargs)

	Adds an object to the simulator that is interfaced by the engine.

	Parameters:

	kwargs (Union[bool, int, float, str, List, Dict]) – Other arguments of add_object().

	Return type:

	None

	
property config: SpecView

	Provides an API to set/get the parameters to initialize.

The default parameters are:

	
	
Spec.config.rate: float

	Rate (Hz) at which the callback() is called.

	
	
Spec.config.process: int = 0

	Process in which the engine is launched. See process for all options.

	
	
Spec.config.sync: bool = True

	Flag that specifies whether we run reactive or asynchronous.

	
	
Spec.config.real_time_factor: float = 0

	A specified upper bound on the real-time factor. Wall-clock-rate`=`real_time_factor`*`rate.
If real_time_factor < 1 the simulation is slower than real time.

	
	
Spec.config.simulate_delays: bool = True

	Flag that specifies whether input delays are simulated.
You probably want to set this to False when running in the real-world.

	
	
Spec.config.color: str = grey

	Specifies the color of logged messages. Check-out the termcolor documentation for the supported colors.

	
	
Spec.config.print_mode: int = 1

	Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

	
	
Spec.config.log_level: int = 30

	Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}.

	Returns:

	API to get/set parameters.

	
property inputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

	
	
Spec.inputs.<name>.window: int = 1

	A non-negative number that specifies the number of messages to pass to the node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	
	
Spec.inputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the received input message before passing it
to the node’s callback().

	
	
Spec.inputs.<name>.space: dict = None

	This space defines the format of valid messages.

	
	
Spec.inputs.<name>.delay: float = 0.0

	A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	
	
Spec.inputs.<name>.skip: bool = False

	Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Returns:

	API to get/set parameters.

	
property objects: SpecView

	Provides an API to set/get the parameters to add an object to the engine.

To add a new object, please use add_object().

Arguments correspond to the signature of add_object().

	Returns:

	API to get/set parameters.

	
property outputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

	
	
Spec.outputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the output message, returned by callback(),
before publishing it.

	
	
Spec.outputs.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

	
property states: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

	
	
Spec.states.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

 Backend

Backend

	
class eagerx.core.specs.BackendSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the selected backend.

	
property config: SpecView

	Provides an API to get/set the parameters to initialize.

	Returns:

	(mutable) API to get/set parameters.

 Processor

Processor

	
class eagerx.core.specs.ProcessorSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the processor.

	
property config: SpecView

	Provides an API to get/set the parameters to initialize.

	Returns:

	(mutable) API to get/set parameters.

 Engine State

Engine State

	
class eagerx.core.specs.EngineStateSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the engine state.

	
property config: SpecView

	Provides an API to get/set the parameters to initialize.

	Returns:

	API to get/set parameters.

 Node

Node

	
class eagerx.core.specs.NodeSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the node.

	
property config: SpecView

	Provides an API to set/get the parameters to initialize.

The default parameters are:

	
	
Spec.config.name: str

	User specified unique node name.

	
	
Spec.config.rate: float

	Rate (Hz) at which the callback() is called.

	
	
Spec.config.process: int = 0

	Process in which the node is launched. See process for all options.

	
	
Spec.config.color: str = grey

	Specifies the color of logged messages & node color in the GUI.
Check-out the termcolor documentation for the supported colors.

	
	
Spec.config.print_mode: int = 1

	Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

	
	
Spec.config.log_level: int = 30

	Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}

	Returns:

	API to get/set parameters.

	
property inputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

	
	
Spec.inputs.<name>.window: int = 1

	A non-negative number that specifies the number of messages to pass to the node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	
	
Spec.inputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the received input message before passing it
to the node’s callback().

	
	
Spec.inputs.<name>.space: dict = None

	This space defines the format of valid messages.

	
	
Spec.inputs.<name>.delay: float = 0.0

	A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	
	
Spec.inputs.<name>.skip: bool = False

	Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Returns:

	API to get/set parameters.

	
property outputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

	
	
Spec.outputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the output message, returned by callback(),
before publishing it.

	
	
Spec.outputs.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

	
property states: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

	
	
Spec.states.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

 Reset Node

Reset Node

	
class eagerx.core.specs.ResetNodeSpec(params)

	A parameter specification that specifies how BaseEnv should initialize the node.

	
property config: SpecView

	Provides an API to set/get the parameters to initialize.

The default parameters are:

	
	
Spec.config.name: str

	User specified unique node name.

	
	
Spec.config.rate: float

	Rate (Hz) at which the callback() is called.

	
	
Spec.config.process: int = 0

	Process in which the node is launched. See process for all options.

	
	
Spec.config.color: str = grey

	Specifies the color of logged messages & node color in the GUI.
Check-out the termcolor documentation for the supported colors.

	
	
Spec.config.print_mode: int = 1

	Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

	
	
Spec.config.log_level: int = 30

	Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50: FATAL}

	Returns:

	API to get/set parameters.

	
property feedthroughs: SpecView

	Provides an API to set/get the parameters of a feedthrough corresponding to registered eagerx.core.register.outputs().

The mutable parameters are:

	
	
Spec.feedthroughs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the received input message before passing it
to the node’s callback().

	
	
Spec.feedthroughs.<name>.space: dict = None

	This space defines the format of valid messages.

	
	
Spec.feedthroughs.<name>.delay: float = 0.0

	A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	Returns:

	API to get/set parameters.

	
property inputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

	
	
Spec.inputs.<name>.window: int = 1

	A non-negative number that specifies the number of messages to pass to the node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	
	
Spec.inputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the received input message before passing it
to the node’s callback().

	
	
Spec.inputs.<name>.space: dict = None

	This space defines the format of valid messages.

	
	
Spec.inputs.<name>.delay: float = 0.0

	A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	
	
Spec.inputs.<name>.skip: bool = False

	Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Returns:

	API to get/set parameters.

	
property outputs: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

	
	
Spec.outputs.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the output message, returned by callback(),
before publishing it.

	
	
Spec.outputs.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

	
property states: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

	
	
Spec.states.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

	
property targets: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.targets().

The mutable parameters are:

	
	
Spec.targets.<name>.processor: ProcessorSpec = None

	A processor that preprocesses the received state message before passing it
to the node’s callback().

	Returns:

	API to get/set parameters.

 Object

Object

	
class eagerx.core.specs.ObjectSpec(params)

	A parameter specification of an object.

	
gui(engine_cls, interactive=True, resolution=None, filename=None)

	Opens a graphical user interface of the object’s engine implementation.

Note

Requires eagerx-gui:

pip3 install eagerx-gui

	Parameters:

	
	engine_cls (Type[Engine]) – The class engine (not instance!) that was used to register the engine implementation (e.g. “PybulletEngine”).

	interactive (Optional[bool]) – If True, an interactive application is launched.
Otherwise, an RGB render of the GUI is returned.
This could be useful when using a headless machine.

	resolution (Optional[List[int]]) – Specifies the resolution of the returned render when interactive is False.
If interactive is True, this argument is ignored.

	filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this name.
If interactive is True, this argument is ignored.

	Return type:

	Optional[ndarray]

	Returns:

	RGB render of the GUI if interactive is False.

	
property actuators: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.actuators().

The mutable parameters are:

	
	
Spec.actuators.<name>.rate: float = 1.0

	Rate (Hz) at which the actuator’s callback() is called.

	
	
Spec.actuators.<name>.window: int = 1

	A non-negative number that specifies the number of messages to pass to the node’s
callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s
callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	
	
Spec.actuators.<name>.space: dict = None

	This space defines the format of valid messages.

	
	
Spec.actuators.<name>.delay: float = 0.0

	A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	
	
Spec.actuators.<name>.skip: bool = False

	Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Returns:

	API to get/set parameters.

	
property config: SpecView

	Provides an API to set/get the parameters to initialize.

The default parameters are:

	Additional parameters registered with the eagerx.core.register.config() decorator.

	
	
Spec.config.name: str

	User specified unique object name.

	
	
Spec.config.actuators: list

	List with selected actuators. Must be a subset of the registered eagerx.core.register.actuators().

	
	
Spec.config.sensors: list

	List with selected sensors. Must be a subset of the registered eagerx.core.register.sensors().

	
	
Spec.config.states: list

	List with selected engine_states. Must be a subset of the registered eagerx.core.register.engine_states().

	Returns:

	API to get/set parameters.

	
property engine: SpecView

	Provides an API to set/get the parameters of an engine-specific implementation.

The mutable parameters are:

	Arguments (excluding spec) of the selected engine’s add_object() method.

	
	
Spec.engine.states.<name>: EngineState

	Link an EngineState to a registered state with eagerx.core.register.states().

	Returns:

	API to get/set parameters.

	
property sensors: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.sensors().

The mutable parameters are:

	
	
Spec.sensors.<name>.rate: float = 1.0

	Rate (Hz) at which the sensor’s callback() is called.

	
	
Spec.sensors.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

	
property states: SpecView

	Provides an API to set/get the parameters of registered eagerx.core.register.engine_states().

The mutable parameters are:

	
	
Spec.states.<name>.space: dict = None

	This space defines the format of valid messages.

	Returns:

	API to get/set parameters.

 Graph

Graph

Table of Contents

	Graph
	Graph

	Engine Graph
	EngineGraph

 Graph

Graph

	
class eagerx.core.graph.Graph(state)

	The Graph API allows users to form a graph of connected nodes and objects.

	
add(entities)

	Add nodes/objects to the graph.

	Parameters:

	entities (Union[NodeSpec, ResetNodeSpec, ObjectSpec, EngineSpec, List[Union[NodeSpec, ResetNodeSpec, ObjectSpec, EngineSpec]]]) – Nodes/objects to add.

	Return type:

	None

	
add_component(entry=None, action=None, observation=None)

	Selects an available component entry (e.g. input, output, etc…) that was not already selected.

	Parameters:

	
	entry (Optional[SpecView]) – Selects the entry, so that it can be connected.

	action (Optional[str]) – Adds a disconnected action entry.

	observation (Optional[str]) – Adds a disconnected observation entry.

	Return type:

	None

	
connect(source=None, target=None, action=None, observation=None, window=None, delay=None, skip=None)

	Connect an action/source (i.e. node/object component) to an observation/target (i.e. node/object component).

	Parameters:

	
	source (Optional[SpecView]) – Compatible source types are
outputs,
sensors, and
states.

	target (Optional[SpecView]) – Compatible target types are
inputs,
actuators,
targets, and
feedthroughs.

	action (Optional[str]) – Name of the action to connect (and add).

	observation (Optional[str]) – Name of the observation to connect (and add).

	window (Optional[int]) – A non-negative number that specifies the number of messages to pass to the node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	skip (Optional[bool]) – Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Return type:

	None

	
classmethod create(nodes=None, objects=None)

	Create a new graph with nodes and objects.

	Parameters:

	
	nodes (Union[NodeSpec, ResetNodeSpec, List[Union[NodeSpec, ResetNodeSpec]], None]) – Nodes to add.

	objects (Union[ObjectSpec, List[ObjectSpec], None]) – Objects to add.

	Return type:

	Graph

	Returns:

	The graph.

	
disconnect(source=None, target=None, action=None, observation=None, remove=False)

	Disconnects a source/action from a target/observation.

	Parameters:

	
	source (Optional[SpecView]) – Compatible source types are
outputs,
sensors, and
states.

	target (Optional[SpecView]) – Compatible target types are
inputs,
actuators,
targets, and
feedthroughs.

	action (Optional[str]) – Name of the action to connect (and add).

	observation (Optional[str]) – Name of the observation to connect (and add).

	remove (bool) – Flag to also remove observations/actions if they are left disconnected after the entry was disconnected.
Actions are only removed if they are completely disconnected.

	Return type:

	None

	
get(entry=None, action=None, observation=None, parameter=None)

	Fetches the parameters of a node/object/action/observation.

	Parameters:

	
	entry (Union[SpecView, EntitySpec, None]) – The entry whose parameters are fetched.

	action (Optional[str]) – Action name whose parameters are fetched.

	observation (Optional[str]) – observation name whose parameters are fetched.

	parameter (Optional[str]) – If only a single parameter needs to be fetched.

	Return type:

	Any

	Returns:

	Parameters

	
get_spec(name)

	Get Spec from the graph

	Parameters:

	name (str) – Name

	Return type:

	EntitySpec

	Returns:

	The specification of the entity.

	
gui(interactive=True, resolution=None, filename=None)

	Opens a graphical user interface of the graph.

Note

Requires eagerx-gui:

pip3 install eagerx-gui

	Parameters:

	
	interactive (Optional[bool]) – If True, an interactive application is launched.
Otherwise, an RGB render of the GUI is returned.
This could be useful when using a headless machine.

	resolution (Optional[List[int]]) – Specifies the resolution of the returned render when interactive is False.
If interactive is True, this argument is ignored.

	filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this name.
If interactive is True, this argument is ignored.

	Return type:

	Optional[ndarray]

	Returns:

	RGB render of the GUI if interactive is False.

	
is_valid(plot=True)

	Checks the validity of the graph.

	Checks if all selected actions, observations,
inputs,
actuators,
targets, and
feedthroughs are connected.

	Checks if the graph is directed and acyclic.

	Parameters:

	plot – Flag to plot the graph. Can be helpful to identify cycles in the graph that break the required acyclic property.

	Return type:

	bool

	Returns:

	flag that specifies the validity of the graph.

	
classmethod load(file)

	Loads the graph state.

The state is loaded in .yaml format and contains the state of every added node, object, action, and observation
and the connections between them.

	Parameters:

	file (str) – A string giving the name (and the file if the file isn’t in the current working directory).

	
reload()

	Reloads (ie imports) all entities in the graph.

	
remove(names, remove=False)

	Removes nodes/objects from the graph.

	First, all associated connections are disconnected.

	Then, removes the node/object.

	Parameters:

	
	names (Union[str, EntitySpec, List[Union[str, EntitySpec]]]) – Either the name or spec of the node/object that is to be removed.

	remove (bool) – Flag to also remove observations/actions if they are left disconnected after the node/object was removed.
Actions are only removed if they are completely disconnected.

	Return type:

	List

	Returns:

	list of disconnected connections.

	
remove_component(entry=None, action=None, observation=None, remove=False)

	Deselects a component entry (e.g. input, output, etc…) that was selected.

	First, all associated connections are disconnected.

	Then, deselects the component entry. For feedthroughs, it will also remove the corresponding output entry.

	Parameters:

	
	entry (Optional[SpecView]) – Deselects the entry.

	action (Optional[str]) – Removes an action entry.

	observation (Optional[str]) – Removes an observation entry

	remove (bool) – Flag to also remove observations/actions if they are left disconnected after the entry was removed.
Actions are only removed if they are completely disconnected.

	Return type:

	None

	
rename(new, action=None, observation=None)

	Renames an action/observation.

	Parameters:

	
	new (str) – New name.

	action (Optional[str]) – Old action name.

	observation (Optional[str]) – Old observation name.

	Return type:

	None

	
render(source, rate, processor=None, window=None, delay=None, skip=None, render_cls=None, process=0, encoding='bgr', **kwargs)

	Visualize rgb images produced by a node/sensor in the graph. The rgb images must be of dtype=uint8 and
shape=(height, width, 3).

	Parameters:

	
	source (SpecView) – Compatible source types are outputs and
sensors.

	rate (float) – The rate (Hz) at which to render the images.

	processor (Optional[ProcessorSpec]) – Processes the received message before passing it
to the target node’s callback().

	window (Optional[int]) – A non-negative number that specifies the number of messages to pass to the node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	skip (Optional[bool]) – Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	render_cls (Optional[Type[Node]]) – The Node of the render node.
By default, it uses the standard RenderNode. In Google colab, the ColabRender class is used.

	process (int) – Process in which the render node is launched. See process for all
options.

	encoding (str) – The encoding (bgr or rgb) of the render source.

	kwargs – Optional arguments required by the render node.

	
save(file)

	Saves the graph state.

The state is saved in .yaml format and contains the state of every added node, object, action, and observation
and the connections between them.

	Parameters:

	file (str) – A string giving the name (and the file if the file isn’t in the current working directory).

	Return type:

	None

	
set(mapping, entry=None, action=None, observation=None, parameter=None)

	Sets the parameters of a node/object/action/observation.

	Parameters:

	
	mapping (Any) – Either a mapping with key = parameter,
or a single value that corresponds to the optional parameter argument.

	entry (Optional[SpecView]) – The entry whose parameters are mutated.

	action (Optional[str]) – Action name whose parameters are mutated.

	observation (Optional[str]) – observation name whose parameters are mutated.

	parameter (Optional[str]) – If only a single value needs to be set. See documentation for mapping.

	Return type:

	None

 Engine Graph

Engine Graph

	
class eagerx.core.graph_engine.EngineGraph(state)

	
	
add(nodes)

	Add nodes to the graph.

	Parameters:

	nodes (Union[NodeSpec, List[NodeSpec]]) – Nodes/objects to add.

	Return type:

	None

	
add_component(entry)

	Selects an available component entry (e.g. input, output, etc…) that was not already selected.

	Parameters:

	entry (SpecView) – Selects the entry, so that it can be connected.

	Return type:

	None

	
connect(source=None, target=None, actuator=None, sensor=None, window=None, delay=None, skip=None)

	Connect an actuator/source to a sensor/target.

	Parameters:

	
	source (Optional[SpecView]) – Compatible source type is outputs.

	target (Optional[SpecView]) – Compatible target type is inputs.

	actuator (Optional[str]) – String name of the actuator.

	sensor (Optional[str]) – String name of the sensor.

	window (Optional[int]) – A non-negative number that specifies the number of messages to pass to the
node’s callback().

	window = 1: Only the last received input message.

	window = x > 1: The trailing last x received input messages.

	window = 0: All input messages received since the last call to the
node’s callback().

Note

With window = 0, the number of input messages may vary and can even be zero.

	delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is ignored if
simulate_delays = True
in the engine’s spec().

	skip (Optional[bool]) – Skip the dependency on this input during the first call to the node’s callback().
May be necessary to ensure that the connected graph is directed and acyclic.

	Return type:

	None

	
disconnect(source=None, target=None, actuator=None, sensor=None)

	Disconnect an actuator/source from a sensor/target.

	Parameters:

	
	source (Optional[SpecView]) – Compatible source type is outputs.

	target (Optional[SpecView]) – Compatible target type is inputs.

	actuator (Optional[str]) – String name of the actuator.

	sensor (Optional[str]) – String name of the sensor.

	Return type:

	None

	
get(entry=None, actuator=None, sensor=None, parameter=None)

	Fetches the parameters of a node/actuator/sensor.

	Parameters:

	
	entry (Union[SpecView, EntitySpec, None]) – The entry whose parameters are fetched.

	actuator (Optional[str]) – Actuator name whose parameters are fetched.

	sensor (Optional[str]) – Sensor name whose parameters are fetched.

	parameter (Optional[str]) – If only a single parameter needs to be fetched.

	Return type:

	Any

	Returns:

	Parameters

	
get_spec(name)

	Get Spec from the graph

	Parameters:

	name (str) – Name

	Return type:

	NodeSpec

	Returns:

	The specification of the entity.

	
gui(interactive=True, resolution=None, filename=None)

	Opens a graphical user interface of the graph.

Note

Requires eagerx-gui:

pip3 install eagerx-gui

	Parameters:

	
	interactive (Optional[bool]) – If True, an interactive application is launched.
Otherwise, an RGB render of the GUI is returned.
This could be useful when using a headless machine.

	resolution (Optional[List[int]]) – Specifies the resolution of the returned render when interactive is False.
If interactive is True, this argument is ignored.

	filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this name.
If interactive is True, this argument is ignored.

	Return type:

	Optional[ndarray]

	Returns:

	RGB render of the GUI if interactive is False.

	
is_valid(plot=True)

	Checks the validity of the graph.

	Checks if all selected
inputs are connected.

	Checks if the graph is directed and acyclic.

	Parameters:

	plot – Flag to plot the graph. Can be helpful to identify cycles in the graph that break the required acyclic property.

	Return type:

	bool

	Returns:

	flag that specifies the validity of the graph.

	
register()

	Returns the nodes that make up this subgraph,
and their relation to the registered actuators and sensors.

	
remove(names)

	Removes a node from the graph.

	First, all associated connections are disconnected.

	Then, removes the nodes/objects.

	Parameters:

	names (Union[str, EntitySpec, List[Union[str, EntitySpec]]]) – Either the name or spec of the node/object that is to be removed.

	Return type:

	None

	
remove_component(entry)

	Deselects a component entry (e.g. input, output, etc…) that was selected.

	First, all associated connections are disconnected.

	Then, deselects the component entry.

	Parameters:

	entry (SpecView) – Deselects the entry.

	Return type:

	None

	
set(mapping, entry, parameter=None)

	Sets the parameters of a node.

	Parameters:

	
	mapping (Any) – Either a mapping with key = parameter,
or a single value that corresponds to the optional parameter argument.

	entry (Optional[SpecView]) – The entry whose parameters are mutated.

	parameter (Optional[str]) – If only a single value needs to be set. See documentation for mapping.

	Return type:

	None

 Environment

Environment

	
class eagerx.core.env.BaseEnv(name, rate, graph, engine, backend=None, force_start=True, render_mode=None)

	The base class for all EAGERx environments that follows the OpenAI gym’s Env API.

	Be sure to call super().__init__() inside the subclass’ constructor with the required arguments (name, graph, etc…).

A subclass should implement the following methods:

	step(): Be sure to call _step() inside this method to perform the step.

	reset(): Be sure to call _reset() inside this method to perform the reset.

A subclass can optionally overwrite the following properties:

	observation_space: Per default, the observations, registered in the graph, are taken.

	action_space: Per default, the actions, registered in the graph, are taken.

	
__init__(name, rate, graph, engine, backend=None, force_start=True, render_mode=None)

	Initializes an environment with EAGERx dynamics.

	Parameters:

	
	name (str) – The name of the environment. Everything related to this environment
(parameters, topics, nodes, etc…) will be registered under namespace: “/name”.

	rate (float) – The rate (Hz) at which the environment will run.

	graph (Graph) – The graph consisting of nodes and objects that describe the environment’s dynamics.

	engine (EngineSpec) – The physics engine that will govern the environment’s dynamics.
For every Object in the graph,
the corresponding engine implementations is chosen.

	backend (Optional[BackendSpec]) – The backend that will govern the communication for this environment.
Per default, the SingleProcess backend is used.

	force_start (bool) – If there already exists an environment with the same name, the existing environment is
first shutdown by calling the BaseEnv() method before initializing this
environment.

	render_mode (Optional[str]) – The render mode that will be used for rendering the environment.

	
_reset(states)

	A private method that should be called within reset().

	Parameters:

	states (Dict) – The desired states to be set before the start an episode.
May also be an (empty) subset of registered states if not all states require a reset.

	Return type:

	Dict

	Returns:

	The initial observation.

	
_step(action)

	A private method that should be called within step().

	Parameters:

	action (Dict) – The actions to be applied in the next timestep.
Should include all registered actions.

	Return type:

	Dict

	Returns:

	The observation of the current timestep that comply with the graph’s observation space.

	
close()

	A method to stop rendering (i.e. close the render window).

A bool message to topic address “name /env/render/toggle”,
which toggles the rendering on/off.

Note

Depending on the source node that is producing the images that are rendered,
images may still be produced, even when the render window is not visible.
This may add computational overhead and influence the run speed.

Optionally, users may subscribe to topic address “name /env/render/toggle”
in the node that is producing the images to stop the production and output empty images instead.

	
gui(interactive=True, resolution=None, filename=None)

	Opens a graphical user interface of the graph.

Note

Requires eagerx-gui:

pip3 install eagerx-gui

	Parameters:

	
	interactive (Optional[bool]) – If True, an interactive application is launched.
Otherwise, an RGB render of the GUI is returned.
This could be useful when using a headless machine.

	resolution (Optional[List[int]]) – Specifies the resolution of the returned render when interactive is False.
If interactive is True, this argument is ignored.

	filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this name.
If interactive is True, this argument is ignored.

	Return type:

	Optional[ndarray]

	Returns:

	RGB render of the GUI if interactive is False.

	
classmethod load(name, file, backend=None, force_start=True)

	Loads an environment corresponding to the graph state.

	Parameters:

	
	name (str) – The name of the environment. Everything related to this environment
(parameters, topics, nodes, etc…) will be registered under namespace: “/name”.

	file (str) – A string giving the name (and the file if the file isn’t in the current working directory).

	backend (Optional[BackendSpec]) – The backend that will govern the communication for this environment.
Per default, the SingleProcess backend is used.

	force_start (bool) – If there already exists an environment with the same name, the existing environment is
first shutdown by calling the BaseEnv() method before initializing this
environment.

	
render()

	A method to start rendering (i.e. open the render window).

A bool message to topic address “name /env/render/toggle”,
which toggles the rendering on/off.
:rtype: Optional[ndarray]
:returns: Optionally, a rgb_array if env.mode=rgb_array.

	
abstract reset(seed=None, options=None)

	An abstract method that resets the environment to an initial state and returns an initial observation.

Note

	To reset the graph, the private method _reset() must be called with the
	desired initial states. The spaces of all states (of Objects and Nodes in the graph) are stored in

state_space().

	Return type:

	Tuple[Union[Dict, ndarray], Dict]

	Returns:

	The initial observation that is complies with the observation_space().

	
save(file)

	Saves the (engine-specific) graph state, that includes the engine & environment nodes.

The state is saved in .yaml format and contains the state of every added node, action, and observation
and the connections between them.

	Parameters:

	file (str) – A string giving the name (and the file if the file isn’t in the current working directory).

	Return type:

	None

	
shutdown()

	A method to shutdown the environment.

	Clear the parameters on the ROS parameter under the namespace /name.

	Close nodes (i.e. release resources and perform close procedure).

	Unregister topics that supplied the I/O communication between nodes.

	
abstract step(action)

	An abstract method that runs one timestep of the environment’s dynamics.

Note

To run one timestep of the graph dynamics (that essentially define the environment dynamics),
this method must call the private method _step() with the actions that comply
with _action_space.

When the end of an episode is reached, the user is responsible for calling reset()
to reset this environment’s state.

	Params action:

	Actions provided by the agent. Should comply with the action_space().

	Return type:

	Tuple[Union[Dict, ndarray], float, bool, bool, Dict]

	Returns:

	A tuple (observation, reward, terminated, truncated, info).

	
	observation: Observations of the current timestep that comply with
	the observation_space().

	reward: amount of reward returned after previous action

	
	terminated: whether the episode has ended due to a terminal state, in which case further step() calls will
	return undefined results

	
	truncated: whether the episode has ended due to a time limit, in which case further step() calls will
	return undefined results

	info: contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
property _action_space: Dict

	Infers the action space from the space of every action.

This space defines the format of valid actions.

	Returns:

	A dictionary with key = action and value = Space.

	
property _observation_space: Dict

	Infers the observation space from the space of every observation.

This space defines the format of valid observations.

Note

Observations with window = 0 are excluded from the observation space.
For observations with window > 1,
the observation space is duplicated window times.

	Returns:

	A dictionary with key = observation and value = Space.

	
property action_space: Space

	The Space object corresponding to valid actions

Per default, the action space of all registered actions in the graph is used.

	
property np_random: Generator

	Returns the environment’s internal _np_random that if not set will initialise with a random seed.

	Returns:
	Instances of np.random.Generator

	
property observation_space: Space

	The Space object corresponding to valid observations.

Per default, the observation space of all registered observations in the graph is used.

	
property state_space: Dict

	Infers the state space from the space of every state.

This space defines the format of valid states that can be set before the start of an episode.

	Returns:

	A dictionary with key = state and value = Space.

 Utilities

Utilities

Table of Contents

	Space
	Space

	Process
	process

	Register
	inputs

	outputs

	states

	targets

	sensors

	actuators

	engine_states

	engine

	Message
	Msg

	Info

	Stamp

 Space

Space

	
class eagerx.core.space.Space(low=None, high=None, shape=None, dtype=<class 'numpy.float32'>, seed=None)

	A (possibly unbounded) space in R^n. Specifically, a Space represents the
Cartesian product of n closed intervals. Each interval has the form of one
of [a, b], (-oo, b], [a, oo), or (-oo, oo).

There are two common use cases:

	
	Identical bound for each dimension::
	>>> Space(low=-1.0, high=2.0, shape=(3, 4), dtype="float32")
Space(3, 4)

	
	Independent bound for each dimension::
	>>> Space(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype="float32")
Space(2,)

	
contains(x)

	Return boolean specifying if x is a valid
member of this space
:type x:
:param x: array to check.

	Return type:

	bool

	
contains_space(space)

	Return boolean specifying if space is contained
in this space.
Low and high of the space must exactly match (instead of lying within the bounds) to return True
:type space: Union[Space, Dict]
:param space: Space that is to be checked.

	Return type:

	bool

	
classmethod from_dict(d)

	Create a space from a dict.

	Parameters:

	d (Dict) – Dict containing the arguments to initialize the space

	Return type:

	Space

	Returns:

	The space.

	
from_jsonable(sample_n)

	Convert a JSONable data type to a batch of samples from this space.

	
sample()

	Randomly sample an element of this space. Can be
uniform or non-uniform sampling based on boundedness of space.

	Return type:

	ndarray

	
seed(seed=None)

	Seed the PRNG of this space and possibly the PRNGs of subspaces.

	Return type:

	list[int]

	
to_dict()

	Convert the space to a dict representation

	Return type:

	Dict

	Returns:

	Dict representation of the space.

	
to_jsonable(sample_n)

	Convert a batch of samples from this space to a JSONable data type.

	
property is_fully_defined: bool

	Check if space is fully defined (i.e. low, high, shape and dtype are all provided).
:return: flag

	
property is_np_flattenable

	Checks whether this space can be flattened.

	
property np_random: Generator

	Lazily seed the PRNG since this is expensive and only needed if sampling from this space.

As seed() is not guaranteed to set the _np_random for particular seeds. We add a
check after seed() to set a new random number generator.

	
property shape: tuple[int, ...] | None

	Return the shape of the space as an immutable property.

 Process

Process

	
class eagerx.core.constants.process

	
	
ENGINE: int = 2

	Spawn a node in the process of the engine.
If an EngineNode requires direct access to the
simulator,
config, and
engine_config,
it must be spawned in the same process as the engine.

	
ENVIRONMENT: int = 1

	Spawn the node/engine in the process of the environment.

	
EXTERNAL: int = 3

	Spawn the node/engine in a separate process. This process is not spawned by the environment.
Instead, the user is responsible for running the executable script with the appropriate arguments.
This allows nodes to run distributed.

	
NEW_PROCESS: int = 0

	Spawn the node/engine in a separate process.
Allows parallelization, but increases communication overhead due to the (de)serialization of messages.

 Register

Register

	
class eagerx.core.register.inputs(**inputs)

	A decorator to register the inputs to a callback().

The callback() method should be decorated.

	Parameters:

	inputs (Any) – The input’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.outputs(**outputs)

	A decorator to register the outputs of a callback().

The callback() method should be decorated.

	Parameters:

	outputs – The output’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.states(**states)

	A decorator to register the states for a reset().

The reset() method should be decorated.

	Parameters:

	outputs – The state’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.targets(**targets)

	A decorator to register the targets of a callback().

The callback() method should be decorated.

	Parameters:

	targets – The target’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.sensors(**sensors)

	A decorator to register the sensors of an Object.

The agnostic() method should be decorated.

	Parameters:

	sensors – The sensor’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.actuators(**actuators)

	A decorator to register the actuators of an Object.

The agnostic() method should be decorated.

	Parameters:

	actuators – The actuator’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.engine_states(**engine_states)

	A decorator to register the engine states of an Object.

The agnostic() method should be decorated.

	Parameters:

	engine_states – The engine state’s msg_type class.

	Return type:

	Callable

	
class eagerx.core.register.engine(engine_cls, entity=None)

	A decorator to register an engine implementation of an Object.

Note

In our running example, the example_engine() method would be decorated.

	Parameters:

	
	engine_cls (Engine) – The Engine’s subclass (not the baseclass Engine).

	entity – The entity that corresponds to the engine implementation. If left unspecified, the engine is
registered to the class that owns the method.

	Return type:

	Callable

 Message

Message

	
class eagerx.utils.utils.Msg(info: Info, msgs: List[Any])

	A dataclass representing a (windowed) input that is passed to callback().

	
property info

	Info on the received messages in msgs.

	
property msgs

	The received messages with indexing msgs[-1] being the most recent message and msgs[0] the oldest.

	
class eagerx.utils.utils.Info(name: Optional[str] = None, node_tick: Optional[int] = None, rate_in: Optional[float] = None, t_node: Optional[List[Stamp]] = None, t_in: Optional[List[Stamp]] = None, done: Optional[bool] = None)

	A dataclass containing info about the received messages in msgs.

	
property name

	Name of the registered input.

	
property node_tick

	Number of times callback() has been called since the last reset.

	
property rate_in

	Rate (Hz) of the input.

	
property t_in

	Simulated timestamp that states at what time the message was received
according to rate_in and seq.

	
property t_node

	Simulated timestamp that states during which cycle the message was received since the last reset according
to rate and node_tick.

	
class eagerx.utils.utils.Stamp(seq: Optional[int] = None, sc: Optional[float] = None, wc: Optional[float] = None)

	A dataclass for timestamping received messages.

	
property sc

	Timestamp according to the simulated clock (seconds). This time is scaled by the real-time factor if > 0.

	
property seq

	Sequence number of received message.

	
property wc

	Timestamp according to the wall clock (seconds).

 Code Examples

Code Examples

Below you can find a code example of environment creation and training using Stable-Baselines3 [https://stable-baselines3.readthedocs.io/en/master/].
To run this code, you should install eagerx_tutorials [https://github.com/eager-dev/eagerx_tutorials], which can be done by running:

pip3 install eagerx_tutorials

Detailed explanation of the code can be found in this Colab tutorial [https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb].

import eagerx
from eagerx.backends.single_process import SingleProcess
from eagerx.wrappers import Flatten
from eagerx_tutorials.pendulum.objects import Pendulum
from eagerx_ode.engine import OdeEngine

import stable_baselines3 as sb3
import numpy as np
from typing import Dict

class PendulumEnv(eagerx.BaseEnv):
 def __init__(self, name: str, rate: float, graph: eagerx.Graph, engine: eagerx.specs.EngineSpec,
 backend: eagerx.specs.BackendSpec):
 self.max_steps = 100
 self.steps = None
 super().__init__(name, rate, graph, engine, backend, force_start=True)

 def step(self, action: Dict):
 observation = self._step(action)
 self.steps += 1

 # Calculate reward and check if the episode is terminated
 th = observation["angle"][0]
 thdot = observation["angular_velocity"][0]
 u = float(action["voltage"])
 th -= 2 * np.pi * np.floor((th + np.pi) / (2 * np.pi))
 cost = th ** 2 + 0.1 * thdot ** 2 + 0.01 * u ** 2
 truncated = self.steps > self.max_steps
 terminated = False

 # Render
 if self.render_mode == "human":
 self.render()
 return observation, -cost, terminated, truncated, {}

 def reset(self, seed=None, options=None) -> Dict:
 states = self.state_space.sample()
 observation = self._reset(states)
 self.steps = 0
 # Render
 if self.render_mode == "human":
 self.render()
 return observation, {}

if __name__ == "__main__":
 rate = 30.0

 pendulum = Pendulum.make("pendulum", actuators=["u"], sensors=["theta", "theta_dot"], states=["model_state"])

 graph = eagerx.Graph.create()
 graph.add(pendulum)
 graph.connect(action="voltage", target=pendulum.actuators.u)
 graph.connect(source=pendulum.sensors.theta, observation="angle")
 graph.connect(source=pendulum.sensors.theta_dot, observation="angular_velocity")

 engine = OdeEngine.make(rate=rate)
 backend = SingleProcess.make()

 env = PendulumEnv(name="PendulumEnv", rate=rate, graph=graph, engine=engine, backend=backend)
 env = Flatten(env)

 model = sb3.SAC("MlpPolicy", env, verbose=1)
 model.learn(total_timesteps=int(150 * rate))

 env.shutdown()

 Troubleshooting

Troubleshooting

Here we list commonly encountered problems and effective methods for debugging.

	When developing, users are advised to select the SingleProcess Backend.
Other backends, such as the Ros1 Backend can make debugging unnecessarily hard due to their distributed capabilities.
Switch to multi-processing and distributed computing once you have a stable implementation.

	If you must debug using the Ros1 Backend, then you are advised to launch all nodes
in the ENVIRONMENT process. See process for more info.

	Live-plotting is currently only supported when the Ros1 Backend is selected.

	To run your code using the Ros1 Backend from within PyCharm,
make sure to modify your launcher file as described here [http://wiki.ros.org/IDEs#PyCharm_.28community_edition.29].
This will also allow you to attach a debugger and set breakpoints.
Instructions for several other IDEs are also covered in the provided link.

	Using eagerx with anaconda can produce warnings (see below) when rendering or when using the GUI. This is a known issue that
is caused by the interaction of pyqtgraph (used in the GUI) and opencv (used for rendering) with Qt libraries. Code seems not
to break, so as a temporary fix, you are advised to suppress this error. Please file a bug report if eagerx/opencv/gui
functionality actually breaks.

QObject::moveToThread: Current thread (0x7fb6c4009eb0) is not the object's thread (0x7fb6c407cf40). Cannot move to
target thread (0x7fb6c4009eb0).

 Contributing to EAGERx

Contributing to EAGERx

Table of Contents

	Creating a Package
	Template

 Creating a Package

Creating a Package

In this section we will describe how to create an EAGERx package, in this case the eagerx_ode package.
This package will contain the OdeEngine for simulating systems based on Ordinary Differential Equations (ODEs).
Since the OdeEngine will be a generic engine that can be useful for others, we will create a public repository for the OdeEngine.

	Template
	Poetry

	Black

	pytest

 Template

Template

We will start by creating a new repository for this Python package, using the template that is available here [https://github.com/eager-dev/eagerx_template].

[image: alternate text]

Screenshot of the EAGERx template package on Github.

As you can see, this template repository already contains some folders and files.
The main benefit of using this template, is that it facilitates to perform continuous integration and provides a clear code structure.
Since the package is just a Python package in the end, any other Python package structure could be used.

In our case, we create a new repository called eagerx_ode [https://github.com/eager-dev/eagerx_ode] using this template.
Since we want to create a package named eagerx_ode and not eagerx_template, we do the following:

	Rename the folder eagerx_template to eagerx_ode.

	Update the PACKAGE_NAME variable in Makefile to be eagerx_ode instead of eagerx_template.

Poetry

Next we will create a Python package using Poetry [https://python-poetry.org/].
If you are not familiar with Poetry, we recommend to check out this article [https://nanthony007.medium.com/stop-using-pip-use-poetry-instead-db7164f4fc72].
It is a very convenient tool for package management.
In the remainder of this section it is assumed that Poetry is installed.

Next, we modify the pyproject.toml [https://github.com/eager-dev/eagerx_template/blob/master/pyproject.toml] file to specify dependencies, add a short description, state the authors of the package etc. .
Here we specify scipy as dependencies, since we will be using scipy to perform the integration of the ODEs.
This results following pyproject.toml [https://github.com/eager-dev/eagerx_ode/blob/master/pyproject.toml].

Now we are ready to start coding! Note that you can always add or update dependencies later using Poetry.

After adding the source code, installing the package is simple (from the root of the repository):

poetry install

Note

This will install the package and its dependencies in a virtual environment, see https://python-poetry.org/docs/basic-usage/#using-your-virtual-environment.

Black

In the eagerx_template, we also make use of black [https://black.readthedocs.io/en/stable/].
According to their docs:

“By using Black, you agree to cede control over minutiae of hand-formatting.
In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.”

It allows to automatically format your code such that it satisfies the Black code style requirements and allows to check these.
In the eagerx_template this can be done as follows.
First, we install the package using Poetry:

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we can format the code using black:

make codestyle

Also, we can check the code style:

make check-codestyle

Note

A number of Github workflows are present within the eagerx_template.
One of them checks for code style using Black.
Therefore, when using this template for a public Github repository, don’t forget to run:
make codestyle before pushing your code.

pytest

Also, the eagerx_template allows to easily add tests using pytest [https://docs.pytest.org/].
You can add your own tests to the tests folder [https://github.com/eager-dev/eagerx_template/tree/master/tests].
Only a dummy test is currently present here [https://github.com/eager-dev/eagerx_template/blob/master/tests/test_import.py].
You can run the test as follows (from the root of the repository):

First, we install the package using Poetry (if you haven’t done so yet):

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we run the tests:

make pytest

Note

A number of Github workflows are present within the eagerx_template.
One of them checks if the tests are passing.
So before pushing your code, you can check whether the tests are passing locally by running make pytest.

Note

Be aware that in order to use a Node, EngineNode or any other enitity from eagerx.core.entities you have created, that they should be imported before making them using make() with the corresponding ID.
Therefore, we advice to import these in the __init__.py as is done for example here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/__init__.py].

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (eagerx.core.env.BaseEnv method)

 	_action_space (eagerx.core.env.BaseEnv property)

 	
 	_observation_space (eagerx.core.env.BaseEnv property)

 	_reset() (eagerx.core.env.BaseEnv method)

 	_step() (eagerx.core.env.BaseEnv method)

A

 	
 	action_space (eagerx.core.env.BaseEnv property)

 	actuators (class in eagerx.core.register)

 	(eagerx.core.specs.ObjectSpec property)

 	add() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	
 	add_component() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	add_object() (eagerx.core.entities.Engine method)

 	(eagerx.core.specs.EngineSpec method)

B

 	
 	Backend (class in eagerx.core.entities)

 	BACKEND (eagerx.core.entities.Backend property)

 	backend (eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.EngineState attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	
 	backend_type (eagerx.core.entities.Backend attribute)

 	BackendSpec (class in eagerx.core.specs)

 	BaseEnv (class in eagerx.core.env)

C

 	
 	callback() (eagerx.core.entities.Engine method)

 	(eagerx.core.entities.EngineNode method)

 	(eagerx.core.entities.Node method)

 	(eagerx.core.entities.ResetNode method)

 	close() (eagerx.core.env.BaseEnv method)

 	COLAB_SUPPORT (eagerx.core.entities.Backend property)

 	color (eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	config (eagerx.core.specs.BackendSpec property)

 	(eagerx.core.specs.EngineSpec property)

 	(eagerx.core.specs.EngineStateSpec property)

 	(eagerx.core.specs.NodeSpec property)

 	(eagerx.core.specs.ObjectSpec property)

 	(eagerx.core.specs.ProcessorSpec property)

 	(eagerx.core.specs.ResetNodeSpec property)

 	
 	connect() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	contains() (eagerx.core.space.Space method)

 	contains_space() (eagerx.core.space.Space method)

 	convert() (eagerx.core.entities.Processor method)

 	create() (eagerx.core.graph.Graph class method)

D

 	
 	delete_param() (eagerx.core.entities.Backend method)

 	deserialize_time() (eagerx.core.entities.Backend static method)

 	
 	disconnect() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	DISTRIBUTED_SUPPORT (eagerx.core.entities.Backend property)

E

 	
 	Engine (class in eagerx.core.entities)

 	engine (class in eagerx.core.register)

 	ENGINE (eagerx.core.constants.process attribute)

 	engine (eagerx.core.specs.ObjectSpec property)

 	engine_states (class in eagerx.core.register)

 	EngineGraph (class in eagerx.core.graph_engine)

 	EngineNode (class in eagerx.core.entities)

 	EngineSpec (class in eagerx.core.specs)

 	EngineState (class in eagerx.core.entities)

 	
 	EngineStateSpec (class in eagerx.core.specs)

 	entity_id (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	ENVIRONMENT (eagerx.core.constants.process attribute)

 	example_engine() (eagerx.core.entities.Object method)

 	EXTERNAL (eagerx.core.constants.process attribute)

F

 	
 	feedthroughs (eagerx.core.entities.ResetNode attribute)

 	(eagerx.core.specs.ResetNodeSpec property)

 	
 	from_dict() (eagerx.core.space.Space class method)

 	from_jsonable() (eagerx.core.space.Space method)

G

 	
 	get() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	get_param() (eagerx.core.entities.Backend method)

 	get_spec() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	
 	Graph (class in eagerx.core.graph)

 	gui() (eagerx.core.env.BaseEnv method)

 	(eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	(eagerx.core.specs.ObjectSpec method)

I

 	
 	Info (class in eagerx.utils.utils)

 	info (eagerx.utils.utils.Msg property)

 	info() (eagerx.core.entities.Backend class method)

 	(eagerx.core.entities.Engine class method)

 	(eagerx.core.entities.EngineNode class method)

 	(eagerx.core.entities.EngineState class method)

 	(eagerx.core.entities.Node class method)

 	(eagerx.core.entities.Object class method)

 	(eagerx.core.entities.Processor class method)

 	(eagerx.core.entities.ResetNode class method)

 	initialize() (eagerx.core.entities.Backend method)

 	(eagerx.core.entities.Engine method)

 	(eagerx.core.entities.EngineNode method)

 	(eagerx.core.entities.EngineState method)

 	(eagerx.core.entities.Node method)

 	(eagerx.core.entities.Processor method)

 	(eagerx.core.entities.ResetNode method)

 	
 	inputs (class in eagerx.core.register)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	(eagerx.core.specs.EngineSpec property)

 	(eagerx.core.specs.NodeSpec property)

 	(eagerx.core.specs.ResetNodeSpec property)

 	is_fully_defined (eagerx.core.space.Space property)

 	is_np_flattenable (eagerx.core.space.Space property)

 	is_valid() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

L

 	
 	load() (eagerx.core.env.BaseEnv class method)

 	(eagerx.core.graph.Graph class method)

 	log_level (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	
 	log_memory (eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

M

 	
 	main (eagerx.core.entities.Backend attribute)

 	make() (eagerx.core.entities.Backend class method)

 	(eagerx.core.entities.Engine class method)

 	(eagerx.core.entities.EngineNode class method)

 	(eagerx.core.entities.EngineState class method)

 	(eagerx.core.entities.Node class method)

 	(eagerx.core.entities.Object class method)

 	(eagerx.core.entities.Processor class method)

 	(eagerx.core.entities.ResetNode class method)

 	
 	Msg (class in eagerx.utils.utils)

 	msgs (eagerx.utils.utils.Msg property)

 	MULTIPROCESSING_SUPPORT (eagerx.core.entities.Backend property)

N

 	
 	name (eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.EngineState attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	(eagerx.utils.utils.Info property)

 	NEW_PROCESS (eagerx.core.constants.process attribute)

 	Node (class in eagerx.core.entities)

 	node_tick (eagerx.utils.utils.Info property)

 	
 	NodeSpec (class in eagerx.core.specs)

 	now() (eagerx.core.entities.Backend method)

 	np_random (eagerx.core.env.BaseEnv property)

 	(eagerx.core.space.Space property)

 	ns (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.EngineState attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

O

 	
 	Object (class in eagerx.core.entities)

 	objects (eagerx.core.entities.Engine attribute)

 	(eagerx.core.specs.EngineSpec property)

 	ObjectSpec (class in eagerx.core.specs)

 	observation_space (eagerx.core.env.BaseEnv property)

 	outputs (class in eagerx.core.register)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	(eagerx.core.specs.EngineSpec property)

 	(eagerx.core.specs.NodeSpec property)

 	(eagerx.core.specs.ResetNodeSpec property)

P

 	
 	pre_reset() (eagerx.core.entities.Engine method)

 	process (class in eagerx.core.constants)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	
 	Processor (class in eagerx.core.entities)

 	ProcessorSpec (class in eagerx.core.specs)

 	Publisher() (eagerx.core.entities.Backend method)

R

 	
 	rate (eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	rate_in (eagerx.utils.utils.Info property)

 	real_time_factor (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	register() (eagerx.core.graph_engine.EngineGraph method)

 	register_environment() (eagerx.core.entities.Backend method)

 	reload() (eagerx.core.graph.Graph method)

 	remove() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	
 	remove_component() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	rename() (eagerx.core.graph.Graph method)

 	render() (eagerx.core.env.BaseEnv method)

 	(eagerx.core.graph.Graph method)

 	reset() (eagerx.core.entities.Engine method)

 	(eagerx.core.entities.EngineNode method)

 	(eagerx.core.entities.EngineState method)

 	(eagerx.core.entities.Node method)

 	(eagerx.core.entities.ResetNode method)

 	(eagerx.core.env.BaseEnv method)

 	ResetNode (class in eagerx.core.entities)

 	ResetNodeSpec (class in eagerx.core.specs)

S

 	
 	sample() (eagerx.core.space.Space method)

 	save() (eagerx.core.env.BaseEnv method)

 	(eagerx.core.graph.Graph method)

 	sc (eagerx.utils.utils.Stamp property)

 	seed() (eagerx.core.space.Space method)

 	sensors (class in eagerx.core.register)

 	(eagerx.core.specs.ObjectSpec property)

 	seq (eagerx.utils.utils.Stamp property)

 	serialize_time() (eagerx.core.entities.Backend static method)

 	set() (eagerx.core.graph.Graph method)

 	(eagerx.core.graph_engine.EngineGraph method)

 	set_delay() (eagerx.core.entities.EngineNode method)

 	(eagerx.core.entities.Node method)

 	(eagerx.core.entities.ResetNode method)

 	shape (eagerx.core.space.Space property)

 	shutdown() (eagerx.core.entities.Backend method)

 	(eagerx.core.entities.Engine method)

 	(eagerx.core.entities.EngineNode method)

 	(eagerx.core.entities.Node method)

 	(eagerx.core.entities.ResetNode method)

 	(eagerx.core.env.BaseEnv method)

 	simulate_delays (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	
 	simulator (eagerx.core.entities.Engine attribute)

 	Space (class in eagerx.core.space)

 	spin() (eagerx.core.entities.Backend method)

 	Stamp (class in eagerx.utils.utils)

 	state_space (eagerx.core.env.BaseEnv property)

 	states (class in eagerx.core.register)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

 	(eagerx.core.specs.EngineSpec property)

 	(eagerx.core.specs.NodeSpec property)

 	(eagerx.core.specs.ObjectSpec property)

 	(eagerx.core.specs.ResetNodeSpec property)

 	step() (eagerx.core.env.BaseEnv method)

 	Subscriber() (eagerx.core.entities.Backend method)

 	sync (eagerx.core.entities.Backend attribute)

 	(eagerx.core.entities.Engine attribute)

 	(eagerx.core.entities.EngineNode attribute)

 	(eagerx.core.entities.Node attribute)

 	(eagerx.core.entities.ResetNode attribute)

T

 	
 	t_in (eagerx.utils.utils.Info property)

 	t_node (eagerx.utils.utils.Info property)

 	targets (class in eagerx.core.register)

 	(eagerx.core.entities.ResetNode attribute)

 	(eagerx.core.specs.ResetNodeSpec property)

 	
 	to_dict() (eagerx.core.space.Space method)

 	to_jsonable() (eagerx.core.space.Space method)

U

 	
 	upload_params() (eagerx.core.entities.Backend method)

W

 	
 	wc (eagerx.utils.utils.Stamp property)

 Engine

Engine

In this section we will describe how to create an engine.
We will show this by going through the steps of creating the OdeEngine, which allows to simulate systems based on known ordinary differential equations (ODEs).
First, we have created an empty package using the template as described here in the contributing to EAGERx section under package creation.

We will create three Python files that together will define the OdeEngine, i.e.:

	engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]: here we will define the engine that performs integration of the ODEs.

	engine_nodes.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]: here we will define the engine nodes of the OdeEngine.

	engine_states.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]: here we will define the engine states of the OdeEngine.

The creation of these files will be discussed in the following sections.

	OdeEngine

	Engine Nodes

	Engine States

 Engine Graph

Engine Graph

In this section we will discuss the concept of the EngineGraph.
We will do this by going through an example.
In this case, we will construct the EngineGraph for the OdeEngine. implementation within the Pendulum Object.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.

Constructing the EngineGraph

The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.
Therefore, it should be constructed within an engine-specific implementation of an :class:`~eagerx.core.entities.Object.

In this case, we will construct an EngineGraph with three sensors, i.e. pendulum_output, image and action_applied and one actuator, i.e. pendulum_input.

@staticmethod
@register.engine(entity_id, OdeEngine) # This decorator pre-initializes engine implementation with default object_params
def ode_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (OdeEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.ode # noqa # pylint: disable=unused-import

 # Set object arguments (nothing to set here in this case)
 spec.OdeEngine.ode = "eagerx_dcsc_setups.pendulum.ode.pendulum_ode/pendulum_ode"
 # Set default params of pendulum ode [J, m, l, b0, K, R, c, a].
 spec.OdeEngine.ode_params = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]

 # Create engine_states (no agnostic states defined in this case)
 spec.OdeEngine.states.model_state = EngineState.make("OdeEngineState")
 spec.OdeEngine.states.model_parameters = EngineState.make("OdeParameters", list(range(7)))

 # Create sensor engine nodes
 obs = EngineNode.make("OdeOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=2)
 image = EngineNode.make(
 "PendulumImage", "image", shape=spec.config.render_shape, rate=spec.sensors.image.rate, process=0
)

 # Create actuator engine nodes
 action = EngineNode.make(
 "OdeInput", "pendulum_actuator", rate=spec.actuators.pendulum_input.rate, process=2, default_action=[0]
)

 # Connect all engine nodes
 graph.add([obs, image, action])
 graph.connect(source=obs.outputs.observation, sensor="pendulum_output")
 graph.connect(source=obs.outputs.observation, target=image.inputs.theta)
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.action)

 # Add action applied
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 graph.add(applied)
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")

Note

Mind the usage of the engine() decorator.
Also, we want to point out that the API for creating the EngineGraph is similar to the one from Graph.

Visualization and Validation

We can use the GUI [https://github.com/eager-dev/eagerx_gui] to inspect the EngineGraph.
This can be done by calling the gui() method:

graph.gui()

Also, after using the make() method to make an object, we can visualize the EngineGraph, using the gui() method:

import eagerx
import eagerx_dcsc_setups

pendulum = eagerx.Object.make("Pendulum", "pendulum")
pendulum.gui(engine_id="OdeEngine")

Note

We have to call the gui() method with the argument engine_id, since an Object can have implementations for more than one Engine, where each has its own EngineGraph.

When clicking Show Graph, the output should look similar to the image below:

[image: alternate text]
The EngingeGraph for the OdeEngine of the Pendulum Object.
Here we can see three sensors (pendulum_output, action_applied, image) and one actuator (pendulum_input).
Note that each EngineNode with the input tick is synchronized with the Engine.

We can also check whether the EngineGraph is valid by clicking Check Validity.
Among other things, this checks whether the graph is a directed acyclical graph (DAG).
We can perform the same check using the is_valid() method.

 OdeEngine

OdeEngine

We will start by creating a file called engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py].
Here we will define the OdeEngine, which will be a subclass of the Engine class.
This class has six abstract methods:

	spec(), here we will specify the OdeEngine’s parameters in a configuration EngineSpec object.

	initialize(), here we determine how the OdeEngine initializes using the specification that is created in the spec() function..

	add_object(), here we will specify how objects are added.

	pre_reset(), here we prepare a reset of the OdeEngine.

	reset(), here we perform the reset routine before the start of an episode.

	callback(), here we define what will happen every time step.
In our case we will integrate the ODEs of each object.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]

[image: alternate text]
In this section we will discuss the concept of a Engine.
The Engine connects the BaseEnv, EngineGraph and EngineState to the physics engine/real world.

spec

First we will define the spec() method.
In this method we will “specify” a number of parameters of the OdeEngine.

We can make a distinction between standard parameters and custom parameters.
First of all, there are the standard parameters for the Engine class:

	rate

	process

	sync

	real_time_factor

	simulate_delays

	log_level

Secondly, we will define some parameters that are custom for the OdeEngine.
We will use these to set some of the parameters of the odeint [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html] method from scipy.integrate which we will use to integrate the ODEs.
These custom parameters are:

	rtol: float, The input parameters rtol and atol determine the error control performed by the solver.

	atol: float, The input parameters rtol and atol determine the error control performed by the solver.

	hmax: float, The maximum absolute step size allowed.

	hmin: float, The minimum absolute step size allowed.

	mxstep: int, Maximum number of (internally defined) steps allowed for each integration point in t.

We can define the default values for all of these parameters using the spec function as follows:

OTHER
from typing import Optional, Dict, Union, List
from scipy.integrate import odeint

ROS IMPORTS
import rospy
from std_msgs.msg import UInt64
from genpy.message import Message

RX IMPORTS
from eagerx.core.constants import process, ERROR
import eagerx.core.register as register
from eagerx.core.entities import Engine
from eagerx.core.specs import EngineSpec
from eagerx.utils.utils import Msg, get_attribute_from_module

class OdeEngine(Engine):
 @staticmethod
 @register.spec("OdeEngine", Engine)
 def spec(
 spec: EngineSpec,
 rate,
 process: Optional[int] = process.NEW_PROCESS,
 sync: Optional[bool] = True,
 real_time_factor: Optional[float] = 0,
 simulate_delays: Optional[bool] = True,
 log_level: Optional[int] = ERROR,
 rtol: float = 2e-8,
 atol: float = 2e-8,
 hmax: float = 0.0,
 hmin: float = 0.0,
 mxstep: int = 0,
):
 # Modify default engine params
 spec.config.rate = rate
 spec.config.process = process
 spec.config.sync = sync
 spec.config.real_time_factor = real_time_factor
 spec.config.simulate_delays = simulate_delays
 spec.config.log_level = log_level
 spec.config.color = "magenta"

 # Add custom params
 custom = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 spec.config.update(custom)

Note

There are couple of things that are worth mentioning here.
First of all, we see the staticmethod and spec() decorators.
You are probably familiar with the first one, but the second might need some explanation.
We use the spec() decorator to create an identifier for this engine, i.e. “OdeEngine”.
Also, it will allow us to directly modify default engine parameters that are stored in the spec object of type EngineSpec.
Custom arguments correspond to the arguments of the initialize() method as we will see later on.

Also worth noting, is that we can see that there are two ways to set parameters, i.e. by setting them directly or by using the update() method.

initialize

Next, we will define the initialize() method.
This method is called with the custom parameters we have just specified (rtol, atol, hmax, hmin, mxstep).
This function will be executed before the first time the callback(), add_object(), reset() and pre_reset() methods are run.
So all attributes that are defined here, are accessible in those methods.
The logic in this routine depends on the physics engine/simulator you would like to interface.
In this case, the simulator is particularly simple, i.e. we will only integrate ODEs.
Therefore, all we need to do to initialize the OdeEngine is to define two dictionaries:

def initialize(self, rtol, atol, hmax, hmin, mxstep):
 # Initialize any simulator here, that is passed as reference to each engine node
 self.odeint_args = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 self.simulator = dict()

Note

Note that the parameters under “custom params” correspond to the signature of the initialize() method.
In this way, we can easily use these parameters to initialize the OdeEngine node.
We will use the simulator attribute to keep track of the objects and their ODEs, states and inputs.
This simulator object is a special object, since it will be shared among all the engine nodes of type EngineNode.
In this way, we create a reference simulator attribute in the Engine.

add_object

The add_object() method initializes each object in the engine.
In our case, this means that we will add a dictionary to the simulator attribute with the object’s name as key.
This dictionary contains information about the object that we will need for integration of the ODE.
First of all, we need a reference to the function that describes the ODE of the object (ode).
Secondly, we allow users to provide a reference to a function that defines the Jacobian (Dfun), in order to speed up integration.
This Dfun will be optional, such that we can also simulate ODEs without a provided Jacobian.
Also, we allow users to specify parameters that can be used to set arguments of the ode:

@register.engine_config(ode=None, ode_params=list())
def add_object(self, config, engine_config, node_params, state_params):

 # Extract relevant agnostic params
 obj_name = config["name"]
 ode = get_attribute_from_module(engine_config["ode"])
 Dfun = get_attribute_from_module(engine_config["Dfun"]) if "Dfun" in config else None

 # Create new object, and add to simulator
 self.simulator[obj_name] = dict(
 ode=ode,
 Dfun=Dfun,
 state=None,
 input=None,
 ode_params=engine_config["ode_params"],
)

Note

Here the get_attribute_from_module() function is just a helper function to import an attribute from a module based on a string that is defined as “[module_name]/[attribute]”.
Again, note the engine_config() decorator in which the ode and ode_params parameters are registered.
Every Object interfaced with this Engine will have to specify these parameters.
The engine receives these parameters via the engine_config argument.
The engine_config object is meant to be used for all parameters that are engine specific.
The agnostic params should be defined in the config object.

pre_reset

The pre_reset() method allows to define procedures that will be run before starting a reset.
This could for example be useful when some routine should be performed in order to be able to reset, e.g. switching controllers or pausing/starting a simulator.
In our case, we do not need to do this, so this will be a simple pass:

def pre_reset(self, **kwargs: Optional[Msg]):
 pass

reset

The reset() method is called by the user before the start of an episode.
This allows to reset the state of the OdeEngine.
In our case, we are not adding a state to the OdeEngine.
However, this could be done, for example to vary the integration parameters over episodes as a form of domain randomization.
In our case, we will not do this.
Therefore, the reset method will also be a simple pass:

@register.states()
def reset(self, **kwargs: Optional[Msg]):
 pass

Note

Note the states() decorator.
If we wanted the OdeEngine to have a state, we could add it using this decorator.

callback

Finally, we will specify how we integrate the ODEs every time step.
This will be done in the callback() method.
As mentioned before, we will use scipy.integrate.odeint() for this.
The callback will be executed at the specified rate.

@register.outputs(tick=UInt64)
def callback(self, t_n: float, **kwargs: Dict[str, Union[List[Message], float, int]]):
 for _obj_name, sim in self.simulator.items():
 # Get the input, set by engine nodes as we will see later on.
 input = sim["input"]
 ode = sim["ode"]
 Dfun = sim["Dfun"]
 x = sim["state"]

 # Get the ode_params that are set by engine states as we will see later on.
 ode_params = sim["ode_params"]

 # If no input was set, return without stepping the simulator.
 if input is None
 return

 # Integrate the ODE
 sim["state"] = odeint(
 ode,
 x,
 [0, 1.0 / self.rate],
 args=(input, *ode_params),
 Dfun=Dfun,
 **self.odeint_args,
)[-1]

Note

Using the outputs() decorator, we specify all the outputs of the OdeEngine node.
In our case, the output is a simple “tick”, see callback() for more information.

Next, we will create the engine nodes.

 Engine Nodes

Engine Nodes

In this section, we will show how to create an EngineNode.
Engine nodes are nodes that interact with the Engine node and define the behaviour of sensors and actuators.
An EngineNode is often engine-specific, since here is defined how actions are applied and observations are obtained.
We will clarify the concept of engine nodes in this section by going through the process of creating the engine nodes for the OdeEngine.
This Engine allows to simulate systems based on ordinary differential equations (ODEs).
In the engine nodes for the OdeEngine, we will define how inputs and outputs are send to and from the OdeEngine.
We will define three classes: OdeOutput, OdeInput and ActionApplied.
Each of these classes will be a subclass of the EngineNode class.
Here we will go into detail on how to the OdeInput EngineNode is created.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]

[image: alternate text]
In this section we will discuss the concept of a EngineNode.
In the engine nodes, we create an implementation of actuators and sensors for a specific Engine.
The EngineNode can be added to an EngineGraph.

OdeInput

First we will define an EngineNode for setting the input for the OdeEngine.
We can do this by using the EngineNode base class.
For the EngineNode base class, there are four abstract methods:

	spec(), here we will specify the parameters of OdeInput.

	initialize(), here we will specify how the OdeInput node is initialized.

	reset(), here we will specify how to reset the state of the OdeInput node.

	callback(), here we will define what this node will do every clock tick.
In this case, it will use the last input/action in the OdeEngine node.

spec

The spec() method can be used to specify default parameters for engine nodes and to assign an id to the node.
Since we need a reference to the simulator (the OdeEngine), we will also specify here that we run this node in the engine process per default.
If this node is run in another process, we won’t have a reference to the simulator attribute from the OdeEngine and will not be able to pass inputs easily to the OdeEngine node.
We also specify that this node has two input and one output, which respectively are “tick”, “action” and “action_applied”.
The “tick” input is required, since it ensures that the OdeInput EngineNode is synchronized with the OdeEngine Engine.
Also, we add a custom parameter called default_action, which will allow to specify a default action that will be applied in case it is not overwritten.
The spec method now looks as follows:

from typing import Optional, List
import numpy as np

IMPORT ROS
from std_msgs.msg import UInt64, Float32MultiArray

IMPORT EAGERX
from eagerx.core.constants import process
from eagerx.utils.utils import Msg
from eagerx.core.entities import EngineNode
import eagerx.core.register as register

class OdeInput(EngineNode):
 @staticmethod
 @register.spec("OdeInput", EngineNode)
 def spec(
 spec,
 name: str,
 rate: float,
 default_action: List,
 color: Optional[str] = "green",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate # Rate at which the callback is called
 spec.config.process = process # This should always be the process of the Engine
 spec.config.inputs = ["tick", "action"] # Set default inputs
 spec.config.outputs = ["action_applied"] # Set default outputs

 # Set custom node params
 spec.config.default_action = default_action

Note

Note the use of the spec() decorator to register the id of this EngineNode.
This basically allows to use this node in objects using the id.

initialize

Next, we will implement the initialize() method.
In this method we will set the object name, the default action and check whether the node is launched in the correct process:

def initialize(self, default_action):
 assert (
 self.process == process.ENGINE
), "Simulation node requires a reference to the simulator, hence it must be launched in the Engine process"
 self.obj_name = self.config["name"]
 self.default_action = np.array(default_action)

Note

Note that the parameter default_action, which we added to the spec object of type NodeSpec becomes an argument to the initialize() method.

reset

We will use the reset() method to reset the object’s input to the default input:

@register.states()
 def reset(self):
 self.simulator[self.obj_name]["input"] = np.squeeze(np.array(self.default_action))

Note

Since we do not want the OdeInput to have any states to reset, the states() decorator is used without any arguments.

callback

At the specified rate of the OdeInput node, the callback() function will be called.
In this callback we want to update the action that will be applied by the OdeEngine based on the latest action we have received.
Here, we will also define the inputs and outputs of the OdeInput node and their message types.
This is necessary in order to set up communication pipelines in the background.
In our case, the inputs are the engine tick “tick” with message type UInt64 and the action “action” which will be a Float32MultiArray.
In code, this is implemented as follows:

@register.inputs(tick=UInt64, action=Float32MultiArray)
@register.outputs(action_applied=Float32MultiArray)
def callback(
 self,
 t_n: float,
 tick: Optional[Msg] = None,
 action: Optional[Float32MultiArray] = None,
):
 # Set action in simulator for next step.
 self.simulator[self.obj_name]["input"] = np.squeeze(action.msgs[-1].data)

 # Send action that has been applied.
 return dict(action_applied=action.msgs[-1])

Note

Note that the message type as provided using the inputs() and outputs() decorators, should be ROS message types.
For more information, see the documentation on callback().
Also, the “tick” input ensures that this callback() is synchronized with the Engine.

Similarly, we can create the engine nodes OdeOutput and ActionApplied for obtaining the output from the OdeEngine simulator and obtaining the value for the action that is applied.
The ActionApplied will allow other nodes to listen to the action that is applied in the simulator.
This can be useful for example when some form of preprocessing is applied on the action before it is applied to the environment.
Then, this node can be used to feedback the applied action as an observation to the environment.

 Engine States

Engine States

In this section we will discuss the concept of an engine state.
We will do so by going through the process of creating an engine state for the OdeEngine.
The OdeEngine allows to simulate systems based on ordinary differential equations (ODEs).

For the OdeEngine we will create two engine states, i.e. the OdeEngineState and OdeParameters engine states.
These engine states will allow to reset the state of objects and reset the parameters for the ODE integration, respectively.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]

[image: alternate text]
In this section we will discuss the concept of an EngineState.
In an engine state, we create an implementation of a state for a specific Engine.

OdeEngineState

The first engine state will will create is the OdeEngineState.
This engine state will be responsible for resetting the states of objects in the OdeEngine during a reset of the environment.
Engine states can be created using the EngineState base class.
For creating an engine node, we need to implement three abstract methods:

	spec()

	initialize()

	reset()

spec

So, first we will implement the spec method.
This method allows to specify default parameters, but also to add custom parameters.
In our case, we do not need to specify parameters, so the implementation is fairly simple:

import numpy as np
from eagerx.core.entities import EngineState
import eagerx.core.register as register

class OdeEngineState(EngineState):
 @staticmethod
 @register.spec("OdeSimState", EngineState)
 def spec(spec):
 pass

Note

Mind the usage of the spec() decorator.
This decorator is required to register the OdeEngineState.
All entities within EAGERx have to be registered, such that their specification can be created based on their unique id.
In this decorator we provide a unique id for the engine state (“OdeSimState”) and specify the type (EngineState).

initialize

The initialize() method allows to initialize the engine state.
In our case, the only thing we need to do during initialization is to store the object name.

def initialize(self):
 self.obj_name = self.config["name"]

Note

Note that we have access to the config attribute.
See config for more information.

reset

Finally, we will implement the reset() method.
This method will be called during a reset and will reset the state of the object.

def reset(self, state, done):
 self.simulator[self.obj_name]["state"] = np.squeeze(state.data)

Note

Note that we have access to the simulator attribute, which is created in the OdeEngine class.

Similarly, we can create the OdeParameters EngineState by implementing the spec(), initialize() and reset() abstract methods.

 Graph

Graph

In this section we will discuss the concept of a Graph.
A Graph object can be created to connect inputs and outputs of different entities of types Node, ResetNode and Object.
This Graph can be used to initialize an BaseEnv.
Here, we will show an example of how to create such a Graph.
We will connect a Pendulum [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py] Object and ButterworthFilter [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py] Node.
Also, we will render the Pendulum object, using the render() method.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/examples/example_ode.py]

[image: alternate text]
In this section we will discuss the concept of a Graph.
A Graph consists of a collection of entities of type Node and Object.
The graph is engine-agnostic and should be provided to the BaseEnv, such that communication pipelines can be set up correctly.

ROS packages required
from eagerx import Object, Engine, Node, initialize, log, process

initialize("eagerx_core", anonymous=True, log_level=log.INFO)

Environment
from eagerx.core.env import EagerxEnv
from eagerx.core.graph import Graph
from eagerx.wrappers import Flatten

Implementation specific
import eagerx.nodes # Registers butterworth_filter
import eagerx_ode # Registers OdeEngine
import eagerx_dcsc_setups.pendulum # Registers Pendulum

if __name__ == "__main__":
 # Define rate (depends on rate of ode)
 rate = 30.0

 # Initialize empty graph
 graph = Graph.create()

 # Create pendulum
 pendulum = Object.make("Pendulum", "pendulum", render_shape=[480, 480], sensors=["pendulum_output", "action_applied"],
 states=["model_state", "model_parameters"])
 graph.add(pendulum)

 # Create Butterworth filter
 bf = Node.make("ButterworthFilter", name="bf", rate=rate, N=2, Wn=13, process=process.NEW_PROCESS)
 graph.add(bf)

 # Connect the nodes
 graph.connect(action="action", target=bf.inputs.signal)
 graph.connect(source=bf.outputs.filtered, target=pendulum.actuators.pendulum_input)
 graph.connect(source=pendulum.sensors.pendulum_output, observation="observation", window=1)
 graph.connect(source=pendulum.sensors.action_applied, observation="action_applied", window=1)

 # Add rendering
 graph.add_component(pendulum.sensors.image)
 graph.render(source=pendulum.sensors.image, rate=10, display=True)

Note

An Object can be created using the make() method.
Note that in order to be able to make the Pendulum Object, we need to import it: import eagerx_dcsc_setups.pendulum.
This also holds for creating a Node using make() method: import eagerx.nodes # Registers butterworth_filter.
Furthermore, note that we first call the initialize() function.
This starts a roscore and allows to initialize the communication pipelines.
Also can be seen here that nodes and objects can be added to the Graph using the add() method.
Furthermore, nodes and objects can be connected using the connect method.
For this method it is worth mentioning that if the action or observation argument is specified, the agent’s action or obeservation space will be extended with that action or observation.
The appropriate agent’s action and observation spaces [https://gym.openai.com/docs/#spaces] can be created if a SpaceConverter is defined for the connected actuators, sensors, inputs or outputs.

GUI

Having created the Graph, we can inspect it using the GUI [https://github.com/eager-dev/eagerx_gui].
Note that we need to install it first if you haven’t done so yet:

pip install eagerx-gui

Next, we can open it by calling gui():

graph.gui()

By clicking on Show Graph, we can inspect the graph in the GUI.
The output you will see should look something like this:

[image: alternate text]

Screenshot of the EAGERx GUI.

Note

The GUI also provides functionalities for constructing a Graph.
So we could also have created the exact same Graph from scratch using the GUI.

 Node

Node

In this section, we will discuss the concept of a Node.
A node can be used to process data at a desired rate.
This could for example be a classifier to detect objects in an image or a PID controller that reduces a control error.
Here, we will go through the process of creating such a Node.
We will create the ButterworthFilter Node, which can be used to filter signals.

The Node base class has four abstract methods we need to implement:

	spec

	initialize

	reset

	callback

Full code is available here. [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py]

[image: alternate text]
In this section we will discuss the concept of a Node.
It can be added to a Graph and is engine-agnostic.

spec

Here we define the specification of the ButterworthFilter.
Since we will make use of the Butterworth filter implementation from scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html], we want to initialize the node with the arguments of this implementation.
Because the signature of the initialize() is defined within the spec() method, we add the parameters N, Wn and btype to the config.
These are the order of the filter, the critical frequency of the filter and the filter type, respectively.
Furthermore, we add a converter to the NodeSpec of the ButterworthFilter, since we want to apply this filter on a scalar signal, while the input to the filter might be multidimensional.
Therefore, we make use of the GetIndex_Float32MultiArray Processor, which selects the entry of a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html].
Finally, we will set a SpaceConverter, such that we can directly connect() the ButterworthFilter to an action without having to define the OpenAI Gym Space [https://gym.openai.com/docs/#spaces] every time.

from typing import Optional
from scipy.signal import butter, sosfilt

IMPORT ROS
from std_msgs.msg import Float32MultiArray

IMPORT EAGERX
import eagerx.core.register as register
from eagerx.utils.utils import Msg
from eagerx.core.entities import Node, Processor, SpaceConverter
from eagerx.core.constants import process

class ButterworthFilter(Node):
 @staticmethod
 @register.spec("ButterworthFilter", Node)
 def spec(
 spec,
 name: str,
 rate: float,
 index: int = 0,
 N: int = 2,
 Wn: float = 1,
 btype: str = "lowpass",
 process: Optional[int] = process.NEW_PROCESS,
 color: Optional[str] = "grey",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate
 spec.config.process = process
 spec.config.color = color
 spec.config.inputs = ["signal"]
 spec.config.outputs = ["filtered"]

 # Modify custom node params
 spec.config.N = N # The order of the filter.
 spec.config.Wn = Wn # The critical frequency or frequencies.
 spec.config.btype = btype # {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’} The type of filter. Default is ‘lowpass’.

 # Add converter & space_converter
 spec.inputs.signal.window = "$(config N)"
 spec.inputs.signal.converter = Processor.make("GetIndex_Float32MultiArray", index=index)
 spec.inputs.signal.space_converter = SpaceConverter.make("Space_Float32MultiArray", [-3], [3], dtype="float32")

Note

Mind the usage of the spec() decorator.
This specifies the ID of the Node.
Also, mind the way the window is set.
Here we specify that the window size is equal to the parameter N, which is the order of the filter.
The syntax $(config [parameter_name]) allows to use a parameter as variable for setting another parameter.

initialize

Within the initialize() method, we will initialize the filter.

def initialize(self, N, Wn, btype):
 for i in self.inputs:
 if i["name"] == "signal":
 assert (
 int(i["window"]) >= N
), "The window size of the signal {} is too small to create a filter with order {}.".format(i["window"], N)
 self.filter = butter(N, Wn, btype, output="sos", fs=self.rate)
 self.N = N

Note

Mind that the signature of the initialize() method is specified by adding parameters to config wihtin spec().

reset

The reset() method is called by the user at the beginning of an episode.
Here the state of the Node can be reset.
However, in our case this is not needed.

@register.states()
def reset(self):
 pass

Note

Mind the usage of the states() decorator.
If the Node would have had a state that should be reset, it should be registered here.
We leave it empty because there is no state to reset.

callback

The callback() method is called with at the rate of the Node.
This is were the actual signal processing takes place.

@register.inputs(signal=Float32MultiArray)
@register.outputs(filtered=Float32MultiArray)
def callback(self, t_n: float, signal: Optional[Msg] = None):
 msgs = signal.msgs

 # Only apply filtering if we have received enough messages (more than the order of the filter)
 if len(msgs) >= self.N:
 unfiltered = [msgs[i].data[0] for i in range(-self.N, 0)]
 filtered = msgs[-1].data if None in unfiltered else [sosfilt(self.filter, unfiltered)[-1]]
 # If we haven't received enough messages, no filtering is applied
 elif len(msgs) > 0:
 filtered = msgs[-1].data
 # If no messages were received, return 0.0
 else:
 filtered = [0.0]
 return dict(filtered=Float32MultiArray(data=filtered))

Note

Mind the usage of the inputs() and outputs() decorators.
These register the inputs inputs and outputs of the Node and their message types.
Also, note that the callback() method has the t_n argument, which is the time passed (seconds) since last reset.

 Template

Template

We will start by creating a new repository for this Python package, using the template that is available here [https://github.com/eager-dev/eagerx_template].

[image: alternate text]

Screenshot of the EAGERx template package on Github.

As you can see, this template repository already contains some folders and files.
The main benefit of using this template, is that it facilitates to perform continuous integration and provides a clear code structure.
Since the package is just a Python package in the end, any other Python package structure could be used.

In our case, we create a new repository called eagerx_ode [https://github.com/eager-dev/eagerx_ode] using this template.
Since we want to create a package named eagerx_ode and not eagerx_template, we do the following:

	Rename the folder eagerx_template to eagerx_ode.

	Update the PACKAGE_NAME variable in Makefile to be eagerx_ode instead of eagerx_template.

Poetry

Next we will create a Python package using Poetry [https://python-poetry.org/].
If you are not familiar with Poetry, we recommend to check out this article [https://nanthony007.medium.com/stop-using-pip-use-poetry-instead-db7164f4fc72].
It is a very convenient tool for package management.
In the remainder of this section it is assumed that Poetry is installed.

Next, we modify the pyproject.toml [https://github.com/eager-dev/eagerx_template/blob/master/pyproject.toml] file to specify dependencies, add a short description, state the authors of the package etc. .
Here we specify scipy as dependencies, since we will be using scipy to perform the integration of the ODEs.
This results following pyproject.toml [https://github.com/eager-dev/eagerx_ode/blob/master/pyproject.toml].

Now we are ready to start coding! Note that you can always add or update dependencies later using Poetry.

After adding the source code, installing the package is simple (from the root of the repository):

poetry install

Note

This will install the package and its dependencies in a virtual environment, see https://python-poetry.org/docs/basic-usage/#using-your-virtual-environment.

Black

In the eagerx_template, we also make use of black [https://black.readthedocs.io/en/stable/].
According to their docs:

“By using Black, you agree to cede control over minutiae of hand-formatting.
In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.”

It allows to automatically format your code such that it satisfies the Black code style requirements and allows to check these.
In the eagerx_template this can be done as follows.
First, we install the package using Poetry:

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we can format the code using black:

make codestyle

Also, we can check the code style:

make check-codestyle

Note

A number of Github workflows are present within the eagerx_template.
One of them checks for code style using Black.
Therefore, when using this template for a public Github repository, don’t forget to run:
make codestyle before pushing your code.

pytest

Also, the eagerx_template allows to easily add tests using pytest [https://docs.pytest.org/].
You can add your own tests to the tests folder [https://github.com/eager-dev/eagerx_template/tree/master/tests].
Only a dummy test is currently present here [https://github.com/eager-dev/eagerx_template/blob/master/tests/test_import.py].
You can run the test as follows (from the root of the repository):

First, we install the package using Poetry (if you haven’t done so yet):

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we run the tests:

make pytest

Note

A number of Github workflows are present within the eagerx_template.
One of them checks if the tests are passing.
So before pushing your code, you can check whether the tests are passing locally by running make pytest.

Note

Be aware that in order to use a Node, EngineNode or any other enitity from eagerx.core.entities you have created, that they should be imported before making them using make() with the corresponding ID.
Therefore, we advice to import these in the __init__.py as is done for example here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/__init__.py].

 Creating an Object

Creating an Object

In this section, we will discuss the concept of Object within EAGERx by going through the steps of creating the Pendulum object.
For this Pendulum Object we will create two engine implementations, i.e. for the OdeEngine [https://github.com/eager-dev/eagerx_ode] and for the RealEngine [https://github.com/eager-dev/eagerx_reality].
This will allow us to use the same Object for both simulated and real experiments.
We will start by implementing the agnostic part of the Pendulum (stuff that is independent from the Engine that is used).
Next, we will implement everything related to the OdeEngine and finally we create the implementation for the RealEngine.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
In this section we will discuss the concept of a Object.
An Object consists of a collection of actuators, sensors and states.
Within the Object, we also define the EngineGraph by creating a graph of nodes of type EngineNode for each physics engine.

Table of Contents

	Agnostic
	agnostic

	spec

	Engine-Specific (OdeEngine)
	ode_engine

	Engine Graph
	Constructing the EngineGraph

	Visualization and Validation

	Engine-Specific (RealEngine)
	real_engine

 Agnostic

Agnostic

Each Object requires an agnostic implementation.
With agnostic, we mean agnostic to the type of engine that is used.
This concerns for example the action and observation spaces of the Object, which are the same no matter whether the system is simulated or not.

An Object has two abstract classes:

	agnostic()

	spec()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

agnostic

The agnostic() method should be used for defining the information that is agnostic of the engine that is being used.
Here we specify what actuators, sensors and states the Object has.
An actuator can be used to apply an action in the environment, a sensor can obtain observations, while a state is something that can be reset before starting an episode.
In our case, we have three sensors (pendulum_output, action_applied and image), one actuator (pendulum_input) and two states (model_state, model_parameters).
We use the model_state to reset the angle and angular velocity of the pendulum during a reset, while we use the model_parameters state to randomize the model parameters over the episodes in order to improve robustness against model inaccuracies.
Furthermore, the agnostic() method should be used to define all agnostic config parameters.
These are the parameters that are independent of the Engine that is used.
We will set the agnostic parameters for each of the actuators, sensors and states, i.e. rates, windows and space converters.
The rates define at which rate the callback of that entity is called, window sizes determine the window size for incoming messages, while space converters define how to convert the messages to an OpenAI Gym space [https://gym.openai.com/docs/#spaces].
More information on these parameters is available at the API Reference sections on actuators, sensors and states.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray
from sensor_msgs.msg import Image

EAGERx IMPORTS
from eagerx_reality.engine import RealEngine
from eagerx_ode.engine import OdeEngine
from eagerx import Object, EngineNode, SpaceConverter, EngineState, Processor
from eagerx.core.specs import ObjectSpec
from eagerx.core.graph_engine import EngineGraph
import eagerx.core.register as register

class Pendulum(Object):
 entity_id = "Pendulum"

 @staticmethod
 @register.sensors(pendulum_output=Float32MultiArray, action_applied=Float32MultiArray, image=Image)
 @register.actuators(pendulum_input=Float32MultiArray)
 @register.engine_states(model_state=Float32MultiArray, model_parameters=Float32MultiArray)
 @register.config(always_render=False, render_shape=[480, 480], camera_index=0)
 def agnostic(spec: ObjectSpec, rate):
 """Agnostic definition of the Pendulum"""
 # Register standard converters, space_converters, and processors
 import eagerx.converters # noqa # pylint: disable=unused-import

 # Set observation properties: (space_converters, rate, etc...)
 spec.sensors.pendulum_output.rate = rate
 spec.sensors.pendulum_output.space_converter = SpaceConverter.make(
 "Space_AngleDecomposition", low=[-1, -1, -9], high=[1, 1, 9], dtype="float32"
)

 spec.sensors.action_applied.rate = rate
 spec.sensors.action_applied.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 spec.sensors.image.rate = 15
 spec.sensors.image.space_converter = SpaceConverter.make(
 "Space_Image", low=0, high=1, shape=spec.config.render_shape, dtype="float32"
)

 # Set actuator properties: (space_converters, rate, etc...)
 spec.actuators.pendulum_input.rate = rate
 spec.actuators.pendulum_input.window = 1
 spec.actuators.pendulum_input.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 # Set model_state properties: (space_converters)
 spec.states.model_state.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3.14159265359, -9], high=[3.14159265359, 9], dtype="float32"
)

 # Set model_parameters properties: (space_converters) # [J, m, l, b0, K, R, c, a]
 fixed = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]
 diff = [0, 0, 0, 0.08, 0.08, 0.08, 0.08] # Percentual delta with respect to fixed value
 low = [val - diff * val for val, diff in zip(fixed, diff)]
 high = [val + diff * val for val, diff in zip(fixed, diff)]
 # low = [1.7955e-04, 5.3580e-02, 4.1610e-02, 1.3490e-04, 4.7690e-02, 9.3385e+00, 1.4250e+00, 1.7480e-03]
 # high = [1.98450e-04, 5.92200e-02, 4.59900e-02, 1.49100e-04, 5.27100e-02, 1.03215e+01, 1.57500e+00, 1.93200e-03]
 spec.states.model_parameters.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=low, high=high, dtype="float32"
)

Note

Mind the use of the sensors(), actuators() and engine_states() decorators.
Registration is required to be able to set the parameters within the ObjectSpec.
The config() decorator registers the agnostic configuration parameters of the Object.
These agnostic configuration parameters define the signature of the spec() method, which we will see in the next subsection.
Also, note that we import eagerx.converters.
While it might look like this import is unused, it actually registers the converters from that module, such that we can use them.
The Space_Float32MultiArray and Space_Image can therefore be used.
The Space_AngleDecomposition space converter can be used because it is imported during initialization of the package in which the object is defined.
This space converter is defined here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

spec

The ObjectSpec() specifies how BaseEnv should initialize the object.
Here we can for example specify what actuators, sensors and states should be used by default, because this does not necessarily have to be all of them.
Per default, we will e.g. use the model_state EngineState only.

@staticmethod
@register.spec(entity_id, Object)
def spec(
 spec: ObjectSpec, name: str, sensors=None, states=None, rate=30, always_render=False, render_shape=None, camera_index=2
):
 """Object spec of Pendulum"""
 # Modify default agnostic params
 # Only allow changes to the agnostic params (rates, windows, (space)converters, etc...
 spec.config.name = name
 spec.config.sensors = sensors if sensors else ["pendulum_output", "action_applied", "image"]
 spec.config.actuators = ["pendulum_input"]
 spec.config.states = states if states else ["model_state"]

 # Add registered agnostic params
 spec.config.always_render = always_render
 spec.config.render_shape = render_shape if render_shape else [480, 480]
 spec.config.camera_index = camera_index

 # Add engine implementation
 Pendulum.agnostic(spec, rate)

Note

Mind the usage of the spec() for initialization of the ObjectSpec.
Also, the parameters that were added to the config() (always_render, render_shape, camera_index), become arguments to the spec() method.

 Engine-Specific (RealEngine)

Engine-Specific (RealEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the RealEngine [https://github.com/eager-dev/eagerx_reality].

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

real_engine

Engine-specific can be created by adding a method to an Object, e.g. example_engine().
In this case, we create an implementation for the RealEngine, to be able to perform experiments with the real system.
For this, we use the engine nodes that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_nodes.py].
Also, we will be using the engine states that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_states.py].
Finally, we will construct an EngineGraph with the created nodes.

@staticmethod
@register.engine(entity_id, RealEngine) # This decorator pre-initializes engine implementation with default object_params
def real_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (RealEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.real # noqa # pylint: disable=unused-import

 # Couple engine states
 spec.RealEngine.states.model_state = EngineState.make("RandomActionAndSleep", sleep_time=1.0, repeat=1)

 # Create sensor engine nodes
 obs = EngineNode.make("PendulumOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=0)
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 image = EngineNode.make(
 "CameraRender",
 "image",
 camera_idx=spec.config.camera_index,
 shape=spec.config.render_shape,
 rate=spec.sensors.image.rate,
 process=0,
)

 # Create actuator engine nodes
 action = EngineNode.make("PendulumInput", "pendulum_input", rate=spec.actuators.pendulum_input.rate, process=0)

 # Connect all engine nodes
 graph.add([obs, applied, image, action])
 graph.connect(source=obs.outputs.pendulum_output, sensor="pendulum_output")
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.pendulum_input)

Note

Mind the use of the engine() decorator, which creates the link to the corresponding engine.
Therefore, the name of the real_engine method is irrelevant, i.e. the link to the RealEngine is defined by the aforementioned decorator.
Also note that we are importing eagerx_dcsc_setups.pendulum.real.
During the import, the engine nodes of this module are registered and therefore we can use the make() and make() methods with the IDs to create these nodes (e.g. PendulumOutput).

 Engine-Specific (OdeEngine)

Engine-Specific (OdeEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the *OdeEngine* [https://github.com/eager-dev/eagerx_ode].

ode_engine

Engine-specific implementations can be created by adding a method to an Object, e.g. example_engine().
Here we will define which EngineNode and EngineState will be used for which actuators, sensors and states.
In our case, we will use the OdeParameters and OdeEngineState (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]) for the model_parameters and model_state states, respectively.
We will use the OdeOutput, ActionApplied and OdeInput (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]) for the pendulum_output sensor, the action_applied and pendulum_input actuators, respectively.
Also, the image sensor will render the pendulum.
For this, we will make use of the PendulumImage engine_node (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/engine_nodes.py]).
For creating these states and nodes, we use the make() and make() methods.
Furthermore, we specify where the ODE of the pendulum can be found (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/pendulum_ode.py]).
Finally, after creating these nodes, we construct an EngineGraph using these nodes by connecting them to each other.

 Space Converter

Space Converter

In this section we will discuss the concept of a SpaceConverter.
A space converter can be used to create Openai Gym Spaces [https://gym.openai.com/docs/#spaces] for messages and define how we can convert them from and to a numpy.ndarray, which is the default data type in OpenAI Gym.
In this section we will go through the process of creating the Space_AngleDecomposition, which will allow to convert a Float32MultiArray to a numpy.ndarray.
At the same time, we will decompose one of the entries of the Float32MultiArray into a sine and cosine component.
This space converter can be used when dealing with angular positions, since learning on the sine and cosine is often more efficient due to the discontinuities in the angular position.

The SpaceConverter base class has two class variables:

	MSG_TYPE_A

	MSG_TYPE_B

and has 5 abstract methods:

	spec()

	initialize()

	get_space()

	A_to_B()

	B_to_A()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

MSG_TYPE_A and MSG_TYPE_B

The class variables MSG_TYPE_A and MSG_TYPE_B specify the two message types that will be converted from one into the other.
For the Gym space, we need an numpy.ndarray, so MSG_TYPE_A will be of this type.
The second message type will be a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html], since this ROS message can be used for multidimensional data communication over ROS topics.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray

RX IMPORTS
import eagerx.core.register as register
from eagerx import Processor, SpaceConverter
from eagerx.core.specs import ProcessorSpec
import numpy as np
from gym.spaces import Box

class Space_AngleDecomposition(SpaceConverter):
 MSG_TYPE_A = np.ndarray
 MSG_TYPE_B = Float32MultiArray

spec

The spec() method can be used to specify with which arguments the SpaceConverter will be initialized.
In our case, we add low, high and dtype to the config.

@staticmethod
@register.spec("Space_AngleDecomposition", SpaceConverter)
def spec(spec: ProcessorSpec, low=None, high=None, dtype="float32"):
 spec.config.update(low=low, high=high, dtype=dtype)

Note

Mind the use of the spec() decorator.

initialize

Next, we implement the initialize() method.
Here, the arguments are the ones we have just defined in the spec() method: low, high and dtype.

def initialize(self, low=None, high=None, dtype="float32"):
 self.low = np.array(low, dtype=dtype)
 self.high = np.array(high, dtype=dtype)
 self.dtype = dtype

get_space

The get_space() method should be used to define the Gym space.

def get_space(self):
 return Box(self.low, self.high, dtype=self.dtype)

A_to_B

The A_to_B() method takes as an argument a message of type MSG_TYPE_A and converts it into MSG_TYPE_B.

def A_to_B(self, msg):
 return Float32MultiArray(data=msg)

B_to_A

The B_to_A() method takes as an argument a message of type MSG_TYPE_B and converts it into MSG_TYPE_A.
In our case, we also decompose the angle here, which will be the first entry of the array.

def B_to_A(self, msg):
 angle = msg.data[0]
 return np.concatenate(([np.sin(angle), np.cos(angle)], msg.data[1:]), axis=0)

make

In order to use this SpaceConverter, the user should call the make() method with the arguments of the spec() method.

 Developer Guide

Developer Guide

In the developer guide we will present a number of concepts from EAGERx and also go through the process of creating those.
The following concepts will be discussed here:

Table of Contents

	Engine
	OdeEngine

	Engine Nodes

	Engine States

	Converters
	Converter

	Processor

	Space Converter

	Nodes
	Node

	OdeEngine

	Reset Node

	Object
	Creating an Object

	Graph
	Graph

	Engine Graph

	States
	Engine States

 Converter

Converter

In this section we will discuss the concept of a Converter.
A converter can be used to convert them convert messages from one type to another.
In this section we will go through the process of creating the Ndarray_Float32MultiArray Converter, which will allow to convert a Float32MultiArray to a numpy.ndarray.

The Converter base class has two class variables:

	MSG_TYPE_A

	MSG_TYPE_B

and has 4 abstract methods:

	spec()

	initialize()

	A_to_B()

	B_to_A()

MSG_TYPE_A and MSG_TYPE_B

The class variables MSG_TYPE_A and MSG_TYPE_B specify the two message types that will be converted from one into the other.
In this example, MSG_TYPE_A will be of type numpy.ndarray.
The second message type will be a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html], since this ROS message can be used for multidimensional data communication over ROS topics.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray

RX IMPORTS
import eagerx.core.register as register
from eagerx import Converter
import numpy as np

class Ndarray_Float32MultiArray(Converter):
 MSG_TYPE_A = np.ndarray
 MSG_TYPE_B = Float32MultiArray

spec

The spec() method can be used to specify with which arguments the Converter will be initialized.
In our case, we add dtype to the config.

@staticmethod
@register.spec("Ndarray_Float32MultiArray", Converter)
def spec(spec: ProcessorSpec, dtype="float32"):
 spec.config.dtype = dtype

Note

Mind the use of the spec() decorator.

initialize

Next, we implement the initialize() method.
Here, the arguments is the ones we have just defined in the spec() method: dtype.

def initialize(self, dtype="float32"):
 self.dtype = dtype

A_to_B

The A_to_B() method takes as an argument a message of type MSG_TYPE_A and converts it into MSG_TYPE_B.

def A_to_B(self, msg):
 return Float32MultiArray(data=msg)

B_to_A

The B_to_A() method takes as an argument a message of type MSG_TYPE_B and converts it into MSG_TYPE_A.
In our case, we convert the Float32MultiArray into a

def B_to_A(self, msg):
 return np.array(msg.data, dtype=self.dtype)

make

In order to use this Converter, the user should call the make() method with the arguments of the spec() method.

 Converters

Converters

Table of Contents

	Converter
	MSG_TYPE_A and MSG_TYPE_B

	spec

	initialize

	A_to_B

	B_to_A

	make

	Processor
	MSG_TYPE

	spec

	initialize

	convert

	make

	Space Converter
	MSG_TYPE_A and MSG_TYPE_B

	spec

	initialize

	get_space

	A_to_B

	B_to_A

	make

 Processor

Processor

In this section we will discuss the concept of a Processor.
A processor can be used to convert messages without changing the data type.
Therefore, creating a Processor is similar to creating a Converter, but instead of having two message types, there is only one.
In this section we will go through the process of creating the AngleDecomposition Processor.
This will decompose one of the entries of a Float32MultiArray into a sine and cosine component.
This processor can be used when dealing with angular positions, since learning on the sine and cosine is often more efficient due to the discontinuities in the angular position.

The Processor base class has one class variable:

	MSG_TYPE

and has 3 abstract methods:

	spec()

	initialize()

	convert()

MSG_TYPE

The class variable MSG_TYPE is the type of the message that will processed.
The message type will be a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html], since this ROS message can be used for multidimensional data communication over ROS topics.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray

RX IMPORTS
import eagerx.core.register as register
from eagerx import Processor
import numpy as np

class AngleDecomposition(Processor):
 MSG_TYPE = Float32MultiArray

spec

The spec() method can be used to specify with which arguments the Processor will be initialized.
In our case, we add angle_idx to the config.

@staticmethod
@register.spec("AngleDecomposition", Processor)
def spec(spec, angle_idx: int = 0):
 spec.config.angle_idx = angle_idx

Note

Mind the use of the spec() decorator.

initialize

Next, we implement the initialize() method.
Here, the arguments is the ones we have just defined in the spec() method: angle_idx.

def initialize(self, dtype="float32"):
 self.angle_idx = angle_idx

convert

The convert() method takes as an argument a message of type MSG_TYPE and processes it.

def convert(self, msg):
 if msg.data == []:
 return msg
 angle = msg.data[self.angle_idx]
 new_data = np.concatenate(([np.sin(angle), np.cos(angle)], msg.data[self.angle_idx + 1 :]), axis=0)
 return Float32MultiArray(data=new_data)

make

In order to use this Processor, the user should call the make() method with the arguments of the spec() method.

 Space Converter

Space Converter

In this section we will discuss the concept of a SpaceConverter.
A space converter can be used to create Openai Gym Spaces [https://gym.openai.com/docs/#spaces] for messages and define how we can convert them from and to a numpy.ndarray, which is the default data type in OpenAI Gym.
In this section we will go through the process of creating the Space_AngleDecomposition, which will allow to convert a Float32MultiArray to a numpy.ndarray.
At the same time, we will decompose one of the entries of the Float32MultiArray into a sine and cosine component.
This space converter can be used when dealing with angular positions, since learning on the sine and cosine is often more efficient due to the discontinuities in the angular position.

The SpaceConverter base class has two class variables:

	MSG_TYPE_A

	MSG_TYPE_B

and has 5 abstract methods:

	spec()

	initialize()

	get_space()

	A_to_B()

	B_to_A()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

MSG_TYPE_A and MSG_TYPE_B

The class variables MSG_TYPE_A and MSG_TYPE_B specify the two message types that will be converted from one into the other.
For the Gym space, we need an numpy.ndarray, so MSG_TYPE_A will be of this type.
The second message type will be a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html], since this ROS message can be used for multidimensional data communication over ROS topics.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray

RX IMPORTS
import eagerx.core.register as register
from eagerx import Processor, SpaceConverter
from eagerx.core.specs import ProcessorSpec
import numpy as np
from gym.spaces import Box

class Space_AngleDecomposition(SpaceConverter):
 MSG_TYPE_A = np.ndarray
 MSG_TYPE_B = Float32MultiArray

spec

The spec() method can be used to specify with which arguments the SpaceConverter will be initialized.
In our case, we add low, high and dtype to the config.

@staticmethod
@register.spec("Space_AngleDecomposition", SpaceConverter)
def spec(spec: ProcessorSpec, low=None, high=None, dtype="float32"):
 spec.config.update(low=low, high=high, dtype=dtype)

Note

Mind the use of the spec() decorator.

initialize

Next, we implement the initialize() method.
Here, the arguments are the ones we have just defined in the spec() method: low, high and dtype.

def initialize(self, low=None, high=None, dtype="float32"):
 self.low = np.array(low, dtype=dtype)
 self.high = np.array(high, dtype=dtype)
 self.dtype = dtype

get_space

The get_space() method should be used to define the Gym space.

def get_space(self):
 return Box(self.low, self.high, dtype=self.dtype)

A_to_B

The A_to_B() method takes as an argument a message of type MSG_TYPE_A and converts it into MSG_TYPE_B.

def A_to_B(self, msg):
 return Float32MultiArray(data=msg)

B_to_A

The B_to_A() method takes as an argument a message of type MSG_TYPE_B and converts it into MSG_TYPE_A.
In our case, we also decompose the angle here, which will be the first entry of the array.

def B_to_A(self, msg):
 angle = msg.data[0]
 return np.concatenate(([np.sin(angle), np.cos(angle)], msg.data[1:]), axis=0)

make

In order to use this SpaceConverter, the user should call the make() method with the arguments of the spec() method.

 Engine

Engine

In this section we will describe how to create an engine.
We will show this by going through the steps of creating the OdeEngine, which allows to simulate systems based on known ordinary differential equations (ODEs).
First, we have created an empty package using the template as described here in the contributing to EAGERx section under package creation.

We will create three Python files that together will define the OdeEngine, i.e.:

	engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]: here we will define the engine that performs integration of the ODEs.

	engine_nodes.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]: here we will define the engine nodes of the OdeEngine.

	engine_states.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]: here we will define the engine states of the OdeEngine.

The creation of these files will be discussed in the following sections.

	OdeEngine

	Engine Nodes

	Engine States

 OdeEngine

OdeEngine

We will start by creating a file called engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py].
Here we will define the OdeEngine, which will be a subclass of the Engine class.
This class has six abstract methods:

	spec(), here we will specify the OdeEngine’s parameters in a configuration EngineSpec object.

	initialize(), here we determine how the OdeEngine initializes using the specification that is created in the spec() function..

	add_object(), here we will specify how objects are added.

	pre_reset(), here we prepare a reset of the OdeEngine.

	reset(), here we perform the reset routine before the start of an episode.

	callback(), here we define what will happen every time step.
In our case we will integrate the ODEs of each object.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]

[image: alternate text]
In this section we will discuss the concept of a Engine.
The Engine connects the BaseEnv, EngineGraph and EngineState to the physics engine/real world.

spec

First we will define the spec() method.
In this method we will “specify” a number of parameters of the OdeEngine.

We can make a distinction between standard parameters and custom parameters.
First of all, there are the standard parameters for the Engine class:

	rate

	process

	sync

	real_time_factor

	simulate_delays

	log_level

Secondly, we will define some parameters that are custom for the OdeEngine.
We will use these to set some of the parameters of the odeint [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html] method from scipy.integrate which we will use to integrate the ODEs.
These custom parameters are:

	rtol: float, The input parameters rtol and atol determine the error control performed by the solver.

	atol: float, The input parameters rtol and atol determine the error control performed by the solver.

	hmax: float, The maximum absolute step size allowed.

	hmin: float, The minimum absolute step size allowed.

	mxstep: int, Maximum number of (internally defined) steps allowed for each integration point in t.

We can define the default values for all of these parameters using the spec function as follows:

OTHER
from typing import Optional, Dict, Union, List
from scipy.integrate import odeint

ROS IMPORTS
import rospy
from std_msgs.msg import UInt64
from genpy.message import Message

RX IMPORTS
from eagerx.core.constants import process, ERROR
import eagerx.core.register as register
from eagerx.core.entities import Engine
from eagerx.core.specs import EngineSpec
from eagerx.utils.utils import Msg, get_attribute_from_module

class OdeEngine(Engine):
 @staticmethod
 @register.spec("OdeEngine", Engine)
 def spec(
 spec: EngineSpec,
 rate,
 process: Optional[int] = process.NEW_PROCESS,
 sync: Optional[bool] = True,
 real_time_factor: Optional[float] = 0,
 simulate_delays: Optional[bool] = True,
 log_level: Optional[int] = ERROR,
 rtol: float = 2e-8,
 atol: float = 2e-8,
 hmax: float = 0.0,
 hmin: float = 0.0,
 mxstep: int = 0,
):
 # Modify default engine params
 spec.config.rate = rate
 spec.config.process = process
 spec.config.sync = sync
 spec.config.real_time_factor = real_time_factor
 spec.config.simulate_delays = simulate_delays
 spec.config.log_level = log_level
 spec.config.color = "magenta"

 # Add custom params
 custom = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 spec.config.update(custom)

Note

There are couple of things that are worth mentioning here.
First of all, we see the staticmethod and spec() decorators.
You are probably familiar with the first one, but the second might need some explanation.
We use the spec() decorator to create an identifier for this engine, i.e. “OdeEngine”.
Also, it will allow us to directly modify default engine parameters that are stored in the spec object of type EngineSpec.
Custom arguments correspond to the arguments of the initialize() method as we will see later on.

Also worth noting, is that we can see that there are two ways to set parameters, i.e. by setting them directly or by using the update() method.

initialize

Next, we will define the initialize() method.
This method is called with the custom parameters we have just specified (rtol, atol, hmax, hmin, mxstep).
This function will be executed before the first time the callback(), add_object(), reset() and pre_reset() methods are run.
So all attributes that are defined here, are accessible in those methods.
The logic in this routine depends on the physics engine/simulator you would like to interface.
In this case, the simulator is particularly simple, i.e. we will only integrate ODEs.
Therefore, all we need to do to initialize the OdeEngine is to define two dictionaries:

def initialize(self, rtol, atol, hmax, hmin, mxstep):
 # Initialize any simulator here, that is passed as reference to each engine node
 self.odeint_args = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 self.simulator = dict()

Note

Note that the parameters under “custom params” correspond to the signature of the initialize() method.
In this way, we can easily use these parameters to initialize the OdeEngine node.
We will use the simulator attribute to keep track of the objects and their ODEs, states and inputs.
This simulator object is a special object, since it will be shared among all the engine nodes of type EngineNode.
In this way, we create a reference simulator attribute in the Engine.

add_object

The add_object() method initializes each object in the engine.
In our case, this means that we will add a dictionary to the simulator attribute with the object’s name as key.
This dictionary contains information about the object that we will need for integration of the ODE.
First of all, we need a reference to the function that describes the ODE of the object (ode).
Secondly, we allow users to provide a reference to a function that defines the Jacobian (Dfun), in order to speed up integration.
This Dfun will be optional, such that we can also simulate ODEs without a provided Jacobian.
Also, we allow users to specify parameters that can be used to set arguments of the ode:

@register.engine_config(ode=None, ode_params=list())
def add_object(self, config, engine_config, node_params, state_params):

 # Extract relevant agnostic params
 obj_name = config["name"]
 ode = get_attribute_from_module(engine_config["ode"])
 Dfun = get_attribute_from_module(engine_config["Dfun"]) if "Dfun" in config else None

 # Create new object, and add to simulator
 self.simulator[obj_name] = dict(
 ode=ode,
 Dfun=Dfun,
 state=None,
 input=None,
 ode_params=engine_config["ode_params"],
)

Note

Here the get_attribute_from_module() function is just a helper function to import an attribute from a module based on a string that is defined as “[module_name]/[attribute]”.
Again, note the engine_config() decorator in which the ode and ode_params parameters are registered.
Every Object interfaced with this Engine will have to specify these parameters.
The engine receives these parameters via the engine_config argument.
The engine_config object is meant to be used for all parameters that are engine specific.
The agnostic params should be defined in the config object.

pre_reset

The pre_reset() method allows to define procedures that will be run before starting a reset.
This could for example be useful when some routine should be performed in order to be able to reset, e.g. switching controllers or pausing/starting a simulator.
In our case, we do not need to do this, so this will be a simple pass:

def pre_reset(self, **kwargs: Optional[Msg]):
 pass

reset

The reset() method is called by the user before the start of an episode.
This allows to reset the state of the OdeEngine.
In our case, we are not adding a state to the OdeEngine.
However, this could be done, for example to vary the integration parameters over episodes as a form of domain randomization.
In our case, we will not do this.
Therefore, the reset method will also be a simple pass:

@register.states()
def reset(self, **kwargs: Optional[Msg]):
 pass

Note

Note the states() decorator.
If we wanted the OdeEngine to have a state, we could add it using this decorator.

callback

Finally, we will specify how we integrate the ODEs every time step.
This will be done in the callback() method.
As mentioned before, we will use scipy.integrate.odeint() for this.
The callback will be executed at the specified rate.

@register.outputs(tick=UInt64)
def callback(self, t_n: float, **kwargs: Dict[str, Union[List[Message], float, int]]):
 for _obj_name, sim in self.simulator.items():
 # Get the input, set by engine nodes as we will see later on.
 input = sim["input"]
 ode = sim["ode"]
 Dfun = sim["Dfun"]
 x = sim["state"]

 # Get the ode_params that are set by engine states as we will see later on.
 ode_params = sim["ode_params"]

 # If no input was set, return without stepping the simulator.
 if input is None
 return

 # Integrate the ODE
 sim["state"] = odeint(
 ode,
 x,
 [0, 1.0 / self.rate],
 args=(input, *ode_params),
 Dfun=Dfun,
 **self.odeint_args,
)[-1]

Note

Using the outputs() decorator, we specify all the outputs of the OdeEngine node.
In our case, the output is a simple “tick”, see callback() for more information.

Next, we will create the engine nodes.

 Engine Nodes

Engine Nodes

In this section, we will show how to create an EngineNode.
Engine nodes are nodes that interact with the Engine node and define the behaviour of sensors and actuators.
An EngineNode is often engine-specific, since here is defined how actions are applied and observations are obtained.
We will clarify the concept of engine nodes in this section by going through the process of creating the engine nodes for the OdeEngine.
This Engine allows to simulate systems based on ordinary differential equations (ODEs).
In the engine nodes for the OdeEngine, we will define how inputs and outputs are send to and from the OdeEngine.
We will define three classes: OdeOutput, OdeInput and ActionApplied.
Each of these classes will be a subclass of the EngineNode class.
Here we will go into detail on how to the OdeInput EngineNode is created.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]

[image: alternate text]
In this section we will discuss the concept of a EngineNode.
In the engine nodes, we create an implementation of actuators and sensors for a specific Engine.
The EngineNode can be added to an EngineGraph.

OdeInput

First we will define an EngineNode for setting the input for the OdeEngine.
We can do this by using the EngineNode base class.
For the EngineNode base class, there are four abstract methods:

	spec(), here we will specify the parameters of OdeInput.

	initialize(), here we will specify how the OdeInput node is initialized.

	reset(), here we will specify how to reset the state of the OdeInput node.

	callback(), here we will define what this node will do every clock tick.
In this case, it will use the last input/action in the OdeEngine node.

spec

The spec() method can be used to specify default parameters for engine nodes and to assign an id to the node.
Since we need a reference to the simulator (the OdeEngine), we will also specify here that we run this node in the engine process per default.
If this node is run in another process, we won’t have a reference to the simulator attribute from the OdeEngine and will not be able to pass inputs easily to the OdeEngine node.
We also specify that this node has two input and one output, which respectively are “tick”, “action” and “action_applied”.
The “tick” input is required, since it ensures that the OdeInput EngineNode is synchronized with the OdeEngine Engine.
Also, we add a custom parameter called default_action, which will allow to specify a default action that will be applied in case it is not overwritten.
The spec method now looks as follows:

from typing import Optional, List
import numpy as np

IMPORT ROS
from std_msgs.msg import UInt64, Float32MultiArray

IMPORT EAGERX
from eagerx.core.constants import process
from eagerx.utils.utils import Msg
from eagerx.core.entities import EngineNode
import eagerx.core.register as register

class OdeInput(EngineNode):
 @staticmethod
 @register.spec("OdeInput", EngineNode)
 def spec(
 spec,
 name: str,
 rate: float,
 default_action: List,
 color: Optional[str] = "green",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate # Rate at which the callback is called
 spec.config.process = process # This should always be the process of the Engine
 spec.config.inputs = ["tick", "action"] # Set default inputs
 spec.config.outputs = ["action_applied"] # Set default outputs

 # Set custom node params
 spec.config.default_action = default_action

Note

Note the use of the spec() decorator to register the id of this EngineNode.
This basically allows to use this node in objects using the id.

initialize

Next, we will implement the initialize() method.
In this method we will set the object name, the default action and check whether the node is launched in the correct process:

def initialize(self, default_action):
 assert (
 self.process == process.ENGINE
), "Simulation node requires a reference to the simulator, hence it must be launched in the Engine process"
 self.obj_name = self.config["name"]
 self.default_action = np.array(default_action)

Note

Note that the parameter default_action, which we added to the spec object of type NodeSpec becomes an argument to the initialize() method.

reset

We will use the reset() method to reset the object’s input to the default input:

@register.states()
 def reset(self):
 self.simulator[self.obj_name]["input"] = np.squeeze(np.array(self.default_action))

Note

Since we do not want the OdeInput to have any states to reset, the states() decorator is used without any arguments.

callback

At the specified rate of the OdeInput node, the callback() function will be called.
In this callback we want to update the action that will be applied by the OdeEngine based on the latest action we have received.
Here, we will also define the inputs and outputs of the OdeInput node and their message types.
This is necessary in order to set up communication pipelines in the background.
In our case, the inputs are the engine tick “tick” with message type UInt64 and the action “action” which will be a Float32MultiArray.
In code, this is implemented as follows:

@register.inputs(tick=UInt64, action=Float32MultiArray)
@register.outputs(action_applied=Float32MultiArray)
def callback(
 self,
 t_n: float,
 tick: Optional[Msg] = None,
 action: Optional[Float32MultiArray] = None,
):
 # Set action in simulator for next step.
 self.simulator[self.obj_name]["input"] = np.squeeze(action.msgs[-1].data)

 # Send action that has been applied.
 return dict(action_applied=action.msgs[-1])

Note

Note that the message type as provided using the inputs() and outputs() decorators, should be ROS message types.
For more information, see the documentation on callback().
Also, the “tick” input ensures that this callback() is synchronized with the Engine.

Similarly, we can create the engine nodes OdeOutput and ActionApplied for obtaining the output from the OdeEngine simulator and obtaining the value for the action that is applied.
The ActionApplied will allow other nodes to listen to the action that is applied in the simulator.
This can be useful for example when some form of preprocessing is applied on the action before it is applied to the environment.
Then, this node can be used to feedback the applied action as an observation to the environment.

 Engine States

Engine States

In this section we will discuss the concept of an engine state.
We will do so by going through the process of creating an engine state for the OdeEngine.
The OdeEngine allows to simulate systems based on ordinary differential equations (ODEs).

For the OdeEngine we will create two engine states, i.e. the OdeEngineState and OdeParameters engine states.
These engine states will allow to reset the state of objects and reset the parameters for the ODE integration, respectively.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]

[image: alternate text]
In this section we will discuss the concept of an EngineState.
In an engine state, we create an implementation of a state for a specific Engine.

OdeEngineState

The first engine state will will create is the OdeEngineState.
This engine state will be responsible for resetting the states of objects in the OdeEngine during a reset of the environment.
Engine states can be created using the EngineState base class.
For creating an engine node, we need to implement three abstract methods:

	spec()

	initialize()

	reset()

spec

So, first we will implement the spec method.
This method allows to specify default parameters, but also to add custom parameters.
In our case, we do not need to specify parameters, so the implementation is fairly simple:

import numpy as np
from eagerx.core.entities import EngineState
import eagerx.core.register as register

class OdeEngineState(EngineState):
 @staticmethod
 @register.spec("OdeSimState", EngineState)
 def spec(spec):
 pass

Note

Mind the usage of the spec() decorator.
This decorator is required to register the OdeEngineState.
All entities within EAGERx have to be registered, such that their specification can be created based on their unique id.
In this decorator we provide a unique id for the engine state (“OdeSimState”) and specify the type (EngineState).

initialize

The initialize() method allows to initialize the engine state.
In our case, the only thing we need to do during initialization is to store the object name.

def initialize(self):
 self.obj_name = self.config["name"]

Note

Note that we have access to the config attribute.
See config for more information.

reset

Finally, we will implement the reset() method.
This method will be called during a reset and will reset the state of the object.

def reset(self, state, done):
 self.simulator[self.obj_name]["state"] = np.squeeze(state.data)

Note

Note that we have access to the simulator attribute, which is created in the OdeEngine class.

Similarly, we can create the OdeParameters EngineState by implementing the spec(), initialize() and reset() abstract methods.

 Engine Graph

Engine Graph

In this section we will discuss the concept of the EngineGraph.
We will do this by going through an example.
In this case, we will construct the EngineGraph for the OdeEngine. implementation within the Pendulum Object.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.

Constructing the EngineGraph

The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.
Therefore, it should be constructed within an engine-specific implementation of an :class:`~eagerx.core.entities.Object.

In this case, we will construct an EngineGraph with three sensors, i.e. pendulum_output, image and action_applied and one actuator, i.e. pendulum_input.

@staticmethod
@register.engine(entity_id, OdeEngine) # This decorator pre-initializes engine implementation with default object_params
def ode_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (OdeEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.ode # noqa # pylint: disable=unused-import

 # Set object arguments (nothing to set here in this case)
 spec.OdeEngine.ode = "eagerx_dcsc_setups.pendulum.ode.pendulum_ode/pendulum_ode"
 # Set default params of pendulum ode [J, m, l, b0, K, R, c, a].
 spec.OdeEngine.ode_params = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]

 # Create engine_states (no agnostic states defined in this case)
 spec.OdeEngine.states.model_state = EngineState.make("OdeEngineState")
 spec.OdeEngine.states.model_parameters = EngineState.make("OdeParameters", list(range(7)))

 # Create sensor engine nodes
 obs = EngineNode.make("OdeOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=2)
 image = EngineNode.make(
 "PendulumImage", "image", shape=spec.config.render_shape, rate=spec.sensors.image.rate, process=0
)

 # Create actuator engine nodes
 action = EngineNode.make(
 "OdeInput", "pendulum_actuator", rate=spec.actuators.pendulum_input.rate, process=2, default_action=[0]
)

 # Connect all engine nodes
 graph.add([obs, image, action])
 graph.connect(source=obs.outputs.observation, sensor="pendulum_output")
 graph.connect(source=obs.outputs.observation, target=image.inputs.theta)
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.action)

 # Add action applied
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 graph.add(applied)
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")

Note

Mind the usage of the engine() decorator.
Also, we want to point out that the API for creating the EngineGraph is similar to the one from Graph.

Visualization and Validation

We can use the GUI [https://github.com/eager-dev/eagerx_gui] to inspect the EngineGraph.
This can be done by calling the gui() method:

graph.gui()

Also, after using the make() method to make an object, we can visualize the EngineGraph, using the gui() method:

import eagerx
import eagerx_dcsc_setups

pendulum = eagerx.Object.make("Pendulum", "pendulum")
pendulum.gui(engine_id="OdeEngine")

Note

We have to call the gui() method with the argument engine_id, since an Object can have implementations for more than one Engine, where each has its own EngineGraph.

When clicking Show Graph, the output should look similar to the image below:

[image: alternate text]
The EngingeGraph for the OdeEngine of the Pendulum Object.
Here we can see three sensors (pendulum_output, action_applied, image) and one actuator (pendulum_input).
Note that each EngineNode with the input tick is synchronized with the Engine.

We can also check whether the EngineGraph is valid by clicking Check Validity.
Among other things, this checks whether the graph is a directed acyclical graph (DAG).
We can perform the same check using the is_valid() method.

 Graph

Graph

In this section we will discuss the concept of a Graph.
A Graph object can be created to connect inputs and outputs of different entities of types Node, ResetNode and Object.
This Graph can be used to initialize an BaseEnv.
Here, we will show an example of how to create such a Graph.
We will connect a Pendulum [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py] Object and ButterworthFilter [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py] Node.
Also, we will render the Pendulum object, using the render() method.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/examples/example_ode.py]

[image: alternate text]
In this section we will discuss the concept of a Graph.
A Graph consists of a collection of entities of type Node and Object.
The graph is engine-agnostic and should be provided to the BaseEnv, such that communication pipelines can be set up correctly.

ROS packages required
from eagerx import Object, Engine, Node, initialize, log, process

initialize("eagerx_core", anonymous=True, log_level=log.INFO)

Environment
from eagerx.core.env import EagerxEnv
from eagerx.core.graph import Graph
from eagerx.wrappers import Flatten

Implementation specific
import eagerx.nodes # Registers butterworth_filter
import eagerx_ode # Registers OdeEngine
import eagerx_dcsc_setups.pendulum # Registers Pendulum

if __name__ == "__main__":
 # Define rate (depends on rate of ode)
 rate = 30.0

 # Initialize empty graph
 graph = Graph.create()

 # Create pendulum
 pendulum = Object.make("Pendulum", "pendulum", render_shape=[480, 480], sensors=["pendulum_output", "action_applied"],
 states=["model_state", "model_parameters"])
 graph.add(pendulum)

 # Create Butterworth filter
 bf = Node.make("ButterworthFilter", name="bf", rate=rate, N=2, Wn=13, process=process.NEW_PROCESS)
 graph.add(bf)

 # Connect the nodes
 graph.connect(action="action", target=bf.inputs.signal)
 graph.connect(source=bf.outputs.filtered, target=pendulum.actuators.pendulum_input)
 graph.connect(source=pendulum.sensors.pendulum_output, observation="observation", window=1)
 graph.connect(source=pendulum.sensors.action_applied, observation="action_applied", window=1)

 # Add rendering
 graph.add_component(pendulum.sensors.image)
 graph.render(source=pendulum.sensors.image, rate=10, display=True)

Note

An Object can be created using the make() method.
Note that in order to be able to make the Pendulum Object, we need to import it: import eagerx_dcsc_setups.pendulum.
This also holds for creating a Node using make() method: import eagerx.nodes # Registers butterworth_filter.
Furthermore, note that we first call the initialize() function.
This starts a roscore and allows to initialize the communication pipelines.
Also can be seen here that nodes and objects can be added to the Graph using the add() method.
Furthermore, nodes and objects can be connected using the connect method.
For this method it is worth mentioning that if the action or observation argument is specified, the agent’s action or obeservation space will be extended with that action or observation.
The appropriate agent’s action and observation spaces [https://gym.openai.com/docs/#spaces] can be created if a SpaceConverter is defined for the connected actuators, sensors, inputs or outputs.

GUI

Having created the Graph, we can inspect it using the GUI [https://github.com/eager-dev/eagerx_gui].
Note that we need to install it first if you haven’t done so yet:

pip install eagerx-gui

Next, we can open it by calling gui():

graph.gui()

By clicking on Show Graph, we can inspect the graph in the GUI.
The output you will see should look something like this:

[image: alternate text]

Screenshot of the EAGERx GUI.

Note

The GUI also provides functionalities for constructing a Graph.
So we could also have created the exact same Graph from scratch using the GUI.

 Graph

Graph

Table of Contents

	Graph
	GUI

	Engine Graph
	Constructing the EngineGraph

	Visualization and Validation

 OdeEngine

OdeEngine

We will start by creating a file called engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py].
Here we will define the OdeEngine, which will be a subclass of the Engine class.
This class has six abstract methods:

	spec(), here we will specify the OdeEngine’s parameters in a configuration EngineSpec object.

	initialize(), here we determine how the OdeEngine initializes using the specification that is created in the spec() function..

	add_object(), here we will specify how objects are added.

	pre_reset(), here we prepare a reset of the OdeEngine.

	reset(), here we perform the reset routine before the start of an episode.

	callback(), here we define what will happen every time step.
In our case we will integrate the ODEs of each object.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]

[image: alternate text]
In this section we will discuss the concept of a Engine.
The Engine connects the BaseEnv, EngineGraph and EngineState to the physics engine/real world.

spec

First we will define the spec() method.
In this method we will “specify” a number of parameters of the OdeEngine.

We can make a distinction between standard parameters and custom parameters.
First of all, there are the standard parameters for the Engine class:

	rate

	process

	sync

	real_time_factor

	simulate_delays

	log_level

Secondly, we will define some parameters that are custom for the OdeEngine.
We will use these to set some of the parameters of the odeint [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html] method from scipy.integrate which we will use to integrate the ODEs.
These custom parameters are:

	rtol: float, The input parameters rtol and atol determine the error control performed by the solver.

	atol: float, The input parameters rtol and atol determine the error control performed by the solver.

	hmax: float, The maximum absolute step size allowed.

	hmin: float, The minimum absolute step size allowed.

	mxstep: int, Maximum number of (internally defined) steps allowed for each integration point in t.

We can define the default values for all of these parameters using the spec function as follows:

OTHER
from typing import Optional, Dict, Union, List
from scipy.integrate import odeint

ROS IMPORTS
import rospy
from std_msgs.msg import UInt64
from genpy.message import Message

RX IMPORTS
from eagerx.core.constants import process, ERROR
import eagerx.core.register as register
from eagerx.core.entities import Engine
from eagerx.core.specs import EngineSpec
from eagerx.utils.utils import Msg, get_attribute_from_module

class OdeEngine(Engine):
 @staticmethod
 @register.spec("OdeEngine", Engine)
 def spec(
 spec: EngineSpec,
 rate,
 process: Optional[int] = process.NEW_PROCESS,
 sync: Optional[bool] = True,
 real_time_factor: Optional[float] = 0,
 simulate_delays: Optional[bool] = True,
 log_level: Optional[int] = ERROR,
 rtol: float = 2e-8,
 atol: float = 2e-8,
 hmax: float = 0.0,
 hmin: float = 0.0,
 mxstep: int = 0,
):
 # Modify default engine params
 spec.config.rate = rate
 spec.config.process = process
 spec.config.sync = sync
 spec.config.real_time_factor = real_time_factor
 spec.config.simulate_delays = simulate_delays
 spec.config.log_level = log_level
 spec.config.color = "magenta"

 # Add custom params
 custom = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 spec.config.update(custom)

Note

There are couple of things that are worth mentioning here.
First of all, we see the staticmethod and spec() decorators.
You are probably familiar with the first one, but the second might need some explanation.
We use the spec() decorator to create an identifier for this engine, i.e. “OdeEngine”.
Also, it will allow us to directly modify default engine parameters that are stored in the spec object of type EngineSpec.
Custom arguments correspond to the arguments of the initialize() method as we will see later on.

Also worth noting, is that we can see that there are two ways to set parameters, i.e. by setting them directly or by using the update() method.

initialize

Next, we will define the initialize() method.
This method is called with the custom parameters we have just specified (rtol, atol, hmax, hmin, mxstep).
This function will be executed before the first time the callback(), add_object(), reset() and pre_reset() methods are run.
So all attributes that are defined here, are accessible in those methods.
The logic in this routine depends on the physics engine/simulator you would like to interface.
In this case, the simulator is particularly simple, i.e. we will only integrate ODEs.
Therefore, all we need to do to initialize the OdeEngine is to define two dictionaries:

def initialize(self, rtol, atol, hmax, hmin, mxstep):
 # Initialize any simulator here, that is passed as reference to each engine node
 self.odeint_args = dict(rtol=rtol, atol=atol, hmax=hmax, hmin=hmin, mxstep=mxstep)
 self.simulator = dict()

Note

Note that the parameters under “custom params” correspond to the signature of the initialize() method.
In this way, we can easily use these parameters to initialize the OdeEngine node.
We will use the simulator attribute to keep track of the objects and their ODEs, states and inputs.
This simulator object is a special object, since it will be shared among all the engine nodes of type EngineNode.
In this way, we create a reference simulator attribute in the Engine.

add_object

The add_object() method initializes each object in the engine.
In our case, this means that we will add a dictionary to the simulator attribute with the object’s name as key.
This dictionary contains information about the object that we will need for integration of the ODE.
First of all, we need a reference to the function that describes the ODE of the object (ode).
Secondly, we allow users to provide a reference to a function that defines the Jacobian (Dfun), in order to speed up integration.
This Dfun will be optional, such that we can also simulate ODEs without a provided Jacobian.
Also, we allow users to specify parameters that can be used to set arguments of the ode:

@register.engine_config(ode=None, ode_params=list())
def add_object(self, config, engine_config, node_params, state_params):

 # Extract relevant agnostic params
 obj_name = config["name"]
 ode = get_attribute_from_module(engine_config["ode"])
 Dfun = get_attribute_from_module(engine_config["Dfun"]) if "Dfun" in config else None

 # Create new object, and add to simulator
 self.simulator[obj_name] = dict(
 ode=ode,
 Dfun=Dfun,
 state=None,
 input=None,
 ode_params=engine_config["ode_params"],
)

Note

Here the get_attribute_from_module() function is just a helper function to import an attribute from a module based on a string that is defined as “[module_name]/[attribute]”.
Again, note the engine_config() decorator in which the ode and ode_params parameters are registered.
Every Object interfaced with this Engine will have to specify these parameters.
The engine receives these parameters via the engine_config argument.
The engine_config object is meant to be used for all parameters that are engine specific.
The agnostic params should be defined in the config object.

pre_reset

The pre_reset() method allows to define procedures that will be run before starting a reset.
This could for example be useful when some routine should be performed in order to be able to reset, e.g. switching controllers or pausing/starting a simulator.
In our case, we do not need to do this, so this will be a simple pass:

def pre_reset(self, **kwargs: Optional[Msg]):
 pass

reset

The reset() method is called by the user before the start of an episode.
This allows to reset the state of the OdeEngine.
In our case, we are not adding a state to the OdeEngine.
However, this could be done, for example to vary the integration parameters over episodes as a form of domain randomization.
In our case, we will not do this.
Therefore, the reset method will also be a simple pass:

@register.states()
def reset(self, **kwargs: Optional[Msg]):
 pass

Note

Note the states() decorator.
If we wanted the OdeEngine to have a state, we could add it using this decorator.

callback

Finally, we will specify how we integrate the ODEs every time step.
This will be done in the callback() method.
As mentioned before, we will use scipy.integrate.odeint() for this.
The callback will be executed at the specified rate.

@register.outputs(tick=UInt64)
def callback(self, t_n: float, **kwargs: Dict[str, Union[List[Message], float, int]]):
 for _obj_name, sim in self.simulator.items():
 # Get the input, set by engine nodes as we will see later on.
 input = sim["input"]
 ode = sim["ode"]
 Dfun = sim["Dfun"]
 x = sim["state"]

 # Get the ode_params that are set by engine states as we will see later on.
 ode_params = sim["ode_params"]

 # If no input was set, return without stepping the simulator.
 if input is None
 return

 # Integrate the ODE
 sim["state"] = odeint(
 ode,
 x,
 [0, 1.0 / self.rate],
 args=(input, *ode_params),
 Dfun=Dfun,
 **self.odeint_args,
)[-1]

Note

Using the outputs() decorator, we specify all the outputs of the OdeEngine node.
In our case, the output is a simple “tick”, see callback() for more information.

Next, we will create the engine nodes.

 Nodes

Nodes

Table of Contents

	Node
	spec

	initialize

	reset

	callback

	OdeEngine
	spec

	initialize

	add_object

	pre_reset

	reset

	callback

	Reset Node

 Node

Node

In this section, we will discuss the concept of a Node.
A node can be used to process data at a desired rate.
This could for example be a classifier to detect objects in an image or a PID controller that reduces a control error.
Here, we will go through the process of creating such a Node.
We will create the ButterworthFilter Node, which can be used to filter signals.

The Node base class has four abstract methods we need to implement:

	spec

	initialize

	reset

	callback

Full code is available here. [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py]

[image: alternate text]
In this section we will discuss the concept of a Node.
It can be added to a Graph and is engine-agnostic.

spec

Here we define the specification of the ButterworthFilter.
Since we will make use of the Butterworth filter implementation from scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html], we want to initialize the node with the arguments of this implementation.
Because the signature of the initialize() is defined within the spec() method, we add the parameters N, Wn and btype to the config.
These are the order of the filter, the critical frequency of the filter and the filter type, respectively.
Furthermore, we add a converter to the NodeSpec of the ButterworthFilter, since we want to apply this filter on a scalar signal, while the input to the filter might be multidimensional.
Therefore, we make use of the GetIndex_Float32MultiArray Processor, which selects the entry of a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html].
Finally, we will set a SpaceConverter, such that we can directly connect() the ButterworthFilter to an action without having to define the OpenAI Gym Space [https://gym.openai.com/docs/#spaces] every time.

from typing import Optional
from scipy.signal import butter, sosfilt

IMPORT ROS
from std_msgs.msg import Float32MultiArray

IMPORT EAGERX
import eagerx.core.register as register
from eagerx.utils.utils import Msg
from eagerx.core.entities import Node, Processor, SpaceConverter
from eagerx.core.constants import process

class ButterworthFilter(Node):
 @staticmethod
 @register.spec("ButterworthFilter", Node)
 def spec(
 spec,
 name: str,
 rate: float,
 index: int = 0,
 N: int = 2,
 Wn: float = 1,
 btype: str = "lowpass",
 process: Optional[int] = process.NEW_PROCESS,
 color: Optional[str] = "grey",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate
 spec.config.process = process
 spec.config.color = color
 spec.config.inputs = ["signal"]
 spec.config.outputs = ["filtered"]

 # Modify custom node params
 spec.config.N = N # The order of the filter.
 spec.config.Wn = Wn # The critical frequency or frequencies.
 spec.config.btype = btype # {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’} The type of filter. Default is ‘lowpass’.

 # Add converter & space_converter
 spec.inputs.signal.window = "$(config N)"
 spec.inputs.signal.converter = Processor.make("GetIndex_Float32MultiArray", index=index)
 spec.inputs.signal.space_converter = SpaceConverter.make("Space_Float32MultiArray", [-3], [3], dtype="float32")

Note

Mind the usage of the spec() decorator.
This specifies the ID of the Node.
Also, mind the way the window is set.
Here we specify that the window size is equal to the parameter N, which is the order of the filter.
The syntax $(config [parameter_name]) allows to use a parameter as variable for setting another parameter.

initialize

Within the initialize() method, we will initialize the filter.

def initialize(self, N, Wn, btype):
 for i in self.inputs:
 if i["name"] == "signal":
 assert (
 int(i["window"]) >= N
), "The window size of the signal {} is too small to create a filter with order {}.".format(i["window"], N)
 self.filter = butter(N, Wn, btype, output="sos", fs=self.rate)
 self.N = N

Note

Mind that the signature of the initialize() method is specified by adding parameters to config wihtin spec().

reset

The reset() method is called by the user at the beginning of an episode.
Here the state of the Node can be reset.
However, in our case this is not needed.

@register.states()
def reset(self):
 pass

Note

Mind the usage of the states() decorator.
If the Node would have had a state that should be reset, it should be registered here.
We leave it empty because there is no state to reset.

callback

The callback() method is called with at the rate of the Node.
This is were the actual signal processing takes place.

@register.inputs(signal=Float32MultiArray)
@register.outputs(filtered=Float32MultiArray)
def callback(self, t_n: float, signal: Optional[Msg] = None):
 msgs = signal.msgs

 # Only apply filtering if we have received enough messages (more than the order of the filter)
 if len(msgs) >= self.N:
 unfiltered = [msgs[i].data[0] for i in range(-self.N, 0)]
 filtered = msgs[-1].data if None in unfiltered else [sosfilt(self.filter, unfiltered)[-1]]
 # If we haven't received enough messages, no filtering is applied
 elif len(msgs) > 0:
 filtered = msgs[-1].data
 # If no messages were received, return 0.0
 else:
 filtered = [0.0]
 return dict(filtered=Float32MultiArray(data=filtered))

Note

Mind the usage of the inputs() and outputs() decorators.
These register the inputs inputs and outputs of the Node and their message types.
Also, note that the callback() method has the t_n argument, which is the time passed (seconds) since last reset.

 Reset Node

Reset Node

This section on the ResetNode will be added soon.

 Engine Graph

Engine Graph

In this section we will discuss the concept of the EngineGraph.
We will do this by going through an example.
In this case, we will construct the EngineGraph for the OdeEngine. implementation within the Pendulum Object.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.

Constructing the EngineGraph

The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.
Therefore, it should be constructed within an engine-specific implementation of an :class:`~eagerx.core.entities.Object.

In this case, we will construct an EngineGraph with three sensors, i.e. pendulum_output, image and action_applied and one actuator, i.e. pendulum_input.

@staticmethod
@register.engine(entity_id, OdeEngine) # This decorator pre-initializes engine implementation with default object_params
def ode_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (OdeEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.ode # noqa # pylint: disable=unused-import

 # Set object arguments (nothing to set here in this case)
 spec.OdeEngine.ode = "eagerx_dcsc_setups.pendulum.ode.pendulum_ode/pendulum_ode"
 # Set default params of pendulum ode [J, m, l, b0, K, R, c, a].
 spec.OdeEngine.ode_params = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]

 # Create engine_states (no agnostic states defined in this case)
 spec.OdeEngine.states.model_state = EngineState.make("OdeEngineState")
 spec.OdeEngine.states.model_parameters = EngineState.make("OdeParameters", list(range(7)))

 # Create sensor engine nodes
 obs = EngineNode.make("OdeOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=2)
 image = EngineNode.make(
 "PendulumImage", "image", shape=spec.config.render_shape, rate=spec.sensors.image.rate, process=0
)

 # Create actuator engine nodes
 action = EngineNode.make(
 "OdeInput", "pendulum_actuator", rate=spec.actuators.pendulum_input.rate, process=2, default_action=[0]
)

 # Connect all engine nodes
 graph.add([obs, image, action])
 graph.connect(source=obs.outputs.observation, sensor="pendulum_output")
 graph.connect(source=obs.outputs.observation, target=image.inputs.theta)
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.action)

 # Add action applied
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 graph.add(applied)
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")

Note

Mind the usage of the engine() decorator.
Also, we want to point out that the API for creating the EngineGraph is similar to the one from Graph.

Visualization and Validation

We can use the GUI [https://github.com/eager-dev/eagerx_gui] to inspect the EngineGraph.
This can be done by calling the gui() method:

graph.gui()

Also, after using the make() method to make an object, we can visualize the EngineGraph, using the gui() method:

import eagerx
import eagerx_dcsc_setups

pendulum = eagerx.Object.make("Pendulum", "pendulum")
pendulum.gui(engine_id="OdeEngine")

Note

We have to call the gui() method with the argument engine_id, since an Object can have implementations for more than one Engine, where each has its own EngineGraph.

When clicking Show Graph, the output should look similar to the image below:

[image: alternate text]
The EngingeGraph for the OdeEngine of the Pendulum Object.
Here we can see three sensors (pendulum_output, action_applied, image) and one actuator (pendulum_input).
Note that each EngineNode with the input tick is synchronized with the Engine.

We can also check whether the EngineGraph is valid by clicking Check Validity.
Among other things, this checks whether the graph is a directed acyclical graph (DAG).
We can perform the same check using the is_valid() method.

 Object

Object

Table of Contents

	Creating an Object
	Agnostic

	Engine-Specific (OdeEngine)

	Engine Graph

	Engine-Specific (RealEngine)

 Creating an Object

Creating an Object

In this section, we will discuss the concept of Object within EAGERx by going through the steps of creating the Pendulum object.
For this Pendulum Object we will create two engine implementations, i.e. for the OdeEngine [https://github.com/eager-dev/eagerx_ode] and for the RealEngine [https://github.com/eager-dev/eagerx_reality].
This will allow us to use the same Object for both simulated and real experiments.
We will start by implementing the agnostic part of the Pendulum (stuff that is independent from the Engine that is used).
Next, we will implement everything related to the OdeEngine and finally we create the implementation for the RealEngine.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
In this section we will discuss the concept of a Object.
An Object consists of a collection of actuators, sensors and states.
Within the Object, we also define the EngineGraph by creating a graph of nodes of type EngineNode for each physics engine.

Table of Contents

	Agnostic
	agnostic

	spec

	Engine-Specific (OdeEngine)
	ode_engine

	Engine Graph
	Constructing the EngineGraph

	Visualization and Validation

	Engine-Specific (RealEngine)
	real_engine

 Agnostic

Agnostic

Each Object requires an agnostic implementation.
With agnostic, we mean agnostic to the type of engine that is used.
This concerns for example the action and observation spaces of the Object, which are the same no matter whether the system is simulated or not.

An Object has two abstract classes:

	agnostic()

	spec()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

agnostic

The agnostic() method should be used for defining the information that is agnostic of the engine that is being used.
Here we specify what actuators, sensors and states the Object has.
An actuator can be used to apply an action in the environment, a sensor can obtain observations, while a state is something that can be reset before starting an episode.
In our case, we have three sensors (pendulum_output, action_applied and image), one actuator (pendulum_input) and two states (model_state, model_parameters).
We use the model_state to reset the angle and angular velocity of the pendulum during a reset, while we use the model_parameters state to randomize the model parameters over the episodes in order to improve robustness against model inaccuracies.
Furthermore, the agnostic() method should be used to define all agnostic config parameters.
These are the parameters that are independent of the Engine that is used.
We will set the agnostic parameters for each of the actuators, sensors and states, i.e. rates, windows and space converters.
The rates define at which rate the callback of that entity is called, window sizes determine the window size for incoming messages, while space converters define how to convert the messages to an OpenAI Gym space [https://gym.openai.com/docs/#spaces].
More information on these parameters is available at the API Reference sections on actuators, sensors and states.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray
from sensor_msgs.msg import Image

EAGERx IMPORTS
from eagerx_reality.engine import RealEngine
from eagerx_ode.engine import OdeEngine
from eagerx import Object, EngineNode, SpaceConverter, EngineState, Processor
from eagerx.core.specs import ObjectSpec
from eagerx.core.graph_engine import EngineGraph
import eagerx.core.register as register

class Pendulum(Object):
 entity_id = "Pendulum"

 @staticmethod
 @register.sensors(pendulum_output=Float32MultiArray, action_applied=Float32MultiArray, image=Image)
 @register.actuators(pendulum_input=Float32MultiArray)
 @register.engine_states(model_state=Float32MultiArray, model_parameters=Float32MultiArray)
 @register.config(always_render=False, render_shape=[480, 480], camera_index=0)
 def agnostic(spec: ObjectSpec, rate):
 """Agnostic definition of the Pendulum"""
 # Register standard converters, space_converters, and processors
 import eagerx.converters # noqa # pylint: disable=unused-import

 # Set observation properties: (space_converters, rate, etc...)
 spec.sensors.pendulum_output.rate = rate
 spec.sensors.pendulum_output.space_converter = SpaceConverter.make(
 "Space_AngleDecomposition", low=[-1, -1, -9], high=[1, 1, 9], dtype="float32"
)

 spec.sensors.action_applied.rate = rate
 spec.sensors.action_applied.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 spec.sensors.image.rate = 15
 spec.sensors.image.space_converter = SpaceConverter.make(
 "Space_Image", low=0, high=1, shape=spec.config.render_shape, dtype="float32"
)

 # Set actuator properties: (space_converters, rate, etc...)
 spec.actuators.pendulum_input.rate = rate
 spec.actuators.pendulum_input.window = 1
 spec.actuators.pendulum_input.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 # Set model_state properties: (space_converters)
 spec.states.model_state.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3.14159265359, -9], high=[3.14159265359, 9], dtype="float32"
)

 # Set model_parameters properties: (space_converters) # [J, m, l, b0, K, R, c, a]
 fixed = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]
 diff = [0, 0, 0, 0.08, 0.08, 0.08, 0.08] # Percentual delta with respect to fixed value
 low = [val - diff * val for val, diff in zip(fixed, diff)]
 high = [val + diff * val for val, diff in zip(fixed, diff)]
 # low = [1.7955e-04, 5.3580e-02, 4.1610e-02, 1.3490e-04, 4.7690e-02, 9.3385e+00, 1.4250e+00, 1.7480e-03]
 # high = [1.98450e-04, 5.92200e-02, 4.59900e-02, 1.49100e-04, 5.27100e-02, 1.03215e+01, 1.57500e+00, 1.93200e-03]
 spec.states.model_parameters.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=low, high=high, dtype="float32"
)

Note

Mind the use of the sensors(), actuators() and engine_states() decorators.
Registration is required to be able to set the parameters within the ObjectSpec.
The config() decorator registers the agnostic configuration parameters of the Object.
These agnostic configuration parameters define the signature of the spec() method, which we will see in the next subsection.
Also, note that we import eagerx.converters.
While it might look like this import is unused, it actually registers the converters from that module, such that we can use them.
The Space_Float32MultiArray and Space_Image can therefore be used.
The Space_AngleDecomposition space converter can be used because it is imported during initialization of the package in which the object is defined.
This space converter is defined here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

spec

The ObjectSpec() specifies how BaseEnv should initialize the object.
Here we can for example specify what actuators, sensors and states should be used by default, because this does not necessarily have to be all of them.
Per default, we will e.g. use the model_state EngineState only.

@staticmethod
@register.spec(entity_id, Object)
def spec(
 spec: ObjectSpec, name: str, sensors=None, states=None, rate=30, always_render=False, render_shape=None, camera_index=2
):
 """Object spec of Pendulum"""
 # Modify default agnostic params
 # Only allow changes to the agnostic params (rates, windows, (space)converters, etc...
 spec.config.name = name
 spec.config.sensors = sensors if sensors else ["pendulum_output", "action_applied", "image"]
 spec.config.actuators = ["pendulum_input"]
 spec.config.states = states if states else ["model_state"]

 # Add registered agnostic params
 spec.config.always_render = always_render
 spec.config.render_shape = render_shape if render_shape else [480, 480]
 spec.config.camera_index = camera_index

 # Add engine implementation
 Pendulum.agnostic(spec, rate)

Note

Mind the usage of the spec() for initialization of the ObjectSpec.
Also, the parameters that were added to the config() (always_render, render_shape, camera_index), become arguments to the spec() method.

 Engine-Specific (RealEngine)

Engine-Specific (RealEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the RealEngine [https://github.com/eager-dev/eagerx_reality].

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

real_engine

Engine-specific can be created by adding a method to an Object, e.g. example_engine().
In this case, we create an implementation for the RealEngine, to be able to perform experiments with the real system.
For this, we use the engine nodes that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_nodes.py].
Also, we will be using the engine states that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_states.py].
Finally, we will construct an EngineGraph with the created nodes.

@staticmethod
@register.engine(entity_id, RealEngine) # This decorator pre-initializes engine implementation with default object_params
def real_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (RealEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.real # noqa # pylint: disable=unused-import

 # Couple engine states
 spec.RealEngine.states.model_state = EngineState.make("RandomActionAndSleep", sleep_time=1.0, repeat=1)

 # Create sensor engine nodes
 obs = EngineNode.make("PendulumOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=0)
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 image = EngineNode.make(
 "CameraRender",
 "image",
 camera_idx=spec.config.camera_index,
 shape=spec.config.render_shape,
 rate=spec.sensors.image.rate,
 process=0,
)

 # Create actuator engine nodes
 action = EngineNode.make("PendulumInput", "pendulum_input", rate=spec.actuators.pendulum_input.rate, process=0)

 # Connect all engine nodes
 graph.add([obs, applied, image, action])
 graph.connect(source=obs.outputs.pendulum_output, sensor="pendulum_output")
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.pendulum_input)

Note

Mind the use of the engine() decorator, which creates the link to the corresponding engine.
Therefore, the name of the real_engine method is irrelevant, i.e. the link to the RealEngine is defined by the aforementioned decorator.
Also note that we are importing eagerx_dcsc_setups.pendulum.real.
During the import, the engine nodes of this module are registered and therefore we can use the make() and make() methods with the IDs to create these nodes (e.g. PendulumOutput).

 Engine-Specific (OdeEngine)

Engine-Specific (OdeEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the *OdeEngine* [https://github.com/eager-dev/eagerx_ode].

ode_engine

Engine-specific implementations can be created by adding a method to an Object, e.g. example_engine().
Here we will define which EngineNode and EngineState will be used for which actuators, sensors and states.
In our case, we will use the OdeParameters and OdeEngineState (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]) for the model_parameters and model_state states, respectively.
We will use the OdeOutput, ActionApplied and OdeInput (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]) for the pendulum_output sensor, the action_applied and pendulum_input actuators, respectively.
Also, the image sensor will render the pendulum.
For this, we will make use of the PendulumImage engine_node (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/engine_nodes.py]).
For creating these states and nodes, we use the make() and make() methods.
Furthermore, we specify where the ODE of the pendulum can be found (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/pendulum_ode.py]).
Finally, after creating these nodes, we construct an EngineGraph using these nodes by connecting them to each other.

 Engine States

Engine States

In this section we will discuss the concept of an engine state.
We will do so by going through the process of creating an engine state for the OdeEngine.
The OdeEngine allows to simulate systems based on ordinary differential equations (ODEs).

For the OdeEngine we will create two engine states, i.e. the OdeEngineState and OdeParameters engine states.
These engine states will allow to reset the state of objects and reset the parameters for the ODE integration, respectively.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]

[image: alternate text]
In this section we will discuss the concept of an EngineState.
In an engine state, we create an implementation of a state for a specific Engine.

OdeEngineState

The first engine state will will create is the OdeEngineState.
This engine state will be responsible for resetting the states of objects in the OdeEngine during a reset of the environment.
Engine states can be created using the EngineState base class.
For creating an engine node, we need to implement three abstract methods:

	spec()

	initialize()

	reset()

spec

So, first we will implement the spec method.
This method allows to specify default parameters, but also to add custom parameters.
In our case, we do not need to specify parameters, so the implementation is fairly simple:

import numpy as np
from eagerx.core.entities import EngineState
import eagerx.core.register as register

class OdeEngineState(EngineState):
 @staticmethod
 @register.spec("OdeSimState", EngineState)
 def spec(spec):
 pass

Note

Mind the usage of the spec() decorator.
This decorator is required to register the OdeEngineState.
All entities within EAGERx have to be registered, such that their specification can be created based on their unique id.
In this decorator we provide a unique id for the engine state (“OdeSimState”) and specify the type (EngineState).

initialize

The initialize() method allows to initialize the engine state.
In our case, the only thing we need to do during initialization is to store the object name.

def initialize(self):
 self.obj_name = self.config["name"]

Note

Note that we have access to the config attribute.
See config for more information.

reset

Finally, we will implement the reset() method.
This method will be called during a reset and will reset the state of the object.

def reset(self, state, done):
 self.simulator[self.obj_name]["state"] = np.squeeze(state.data)

Note

Note that we have access to the simulator attribute, which is created in the OdeEngine class.

Similarly, we can create the OdeParameters EngineState by implementing the spec(), initialize() and reset() abstract methods.

 States

States

	Engine States

 Engine

Engine

In this section we will describe how to create an engine.
We will show this by going through the steps of creating the OdeEngine, which allows to simulate systems based on known ordinary differential equations (ODEs).
First, we have created an empty package using the template as described here in the contributing to EAGERx section under package creation.

We will create three Python files that together will define the OdeEngine, i.e.:

	engine.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine.py]: here we will define the engine that performs integration of the ODEs.

	engine_nodes.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]: here we will define the engine nodes of the OdeEngine.

	engine_states.py [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]: here we will define the engine states of the OdeEngine.

The creation of these files will be discussed in the following sections.

	Engine Nodes

 Engine Graph

Engine Graph

In this section we will discuss the concept of the EngineGraph.
We will do this by going through an example.
In this case, we will construct the EngineGraph for the OdeEngine. implementation within the Pendulum Object.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.

Constructing the EngineGraph

The EngineGraph defines how the nodes of type EngineNode are connected to eachother within an engine-specific implementation of an Object.
Therefore, it should be constructed within an engine-specific implementation of an :class:`~eagerx.core.entities.Object.

In this case, we will construct an EngineGraph with three sensors, i.e. pendulum_output, image and action_applied and one actuator, i.e. pendulum_input.

@staticmethod
@register.engine(entity_id, OdeEngine) # This decorator pre-initializes engine implementation with default object_params
def ode_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (OdeEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.ode # noqa # pylint: disable=unused-import

 # Set object arguments (nothing to set here in this case)
 spec.OdeEngine.ode = "eagerx_dcsc_setups.pendulum.ode.pendulum_ode/pendulum_ode"
 # Set default params of pendulum ode [J, m, l, b0, K, R, c, a].
 spec.OdeEngine.ode_params = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]

 # Create engine_states (no agnostic states defined in this case)
 spec.OdeEngine.states.model_state = EngineState.make("OdeEngineState")
 spec.OdeEngine.states.model_parameters = EngineState.make("OdeParameters", list(range(7)))

 # Create sensor engine nodes
 obs = EngineNode.make("OdeOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=2)
 image = EngineNode.make(
 "PendulumImage", "image", shape=spec.config.render_shape, rate=spec.sensors.image.rate, process=0
)

 # Create actuator engine nodes
 action = EngineNode.make(
 "OdeInput", "pendulum_actuator", rate=spec.actuators.pendulum_input.rate, process=2, default_action=[0]
)

 # Connect all engine nodes
 graph.add([obs, image, action])
 graph.connect(source=obs.outputs.observation, sensor="pendulum_output")
 graph.connect(source=obs.outputs.observation, target=image.inputs.theta)
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.action)

 # Add action applied
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 graph.add(applied)
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")

Note

Mind the usage of the engine() decorator.
Also, we want to point out that the API for creating the EngineGraph is similar to the one from Graph.

Visualization and Validation

We can use the GUI [https://github.com/eager-dev/eagerx_gui] to inspect the EngineGraph.
This can be done by calling the gui() method:

graph.gui()

Also, after using the make() method to make an object, we can visualize the EngineGraph, using the gui() method:

import eagerx
import eagerx_dcsc_setups

pendulum = eagerx.Object.make("Pendulum", "pendulum")
pendulum.gui(engine_id="OdeEngine")

Note

We have to call the gui() method with the argument engine_id, since an Object can have implementations for more than one Engine, where each has its own EngineGraph.

When clicking Show Graph, the output should look similar to the image below:

[image: alternate text]
The EngingeGraph for the OdeEngine of the Pendulum Object.
Here we can see three sensors (pendulum_output, action_applied, image) and one actuator (pendulum_input).
Note that each EngineNode with the input tick is synchronized with the Engine.

We can also check whether the EngineGraph is valid by clicking Check Validity.
Among other things, this checks whether the graph is a directed acyclical graph (DAG).
We can perform the same check using the is_valid() method.

 Engine Nodes

Engine Nodes

In this section, we will show how to create an EngineNode.
Engine nodes are nodes that interact with the Engine node and define the behaviour of sensors and actuators.
An EngineNode is often engine-specific, since here is defined how actions are applied and observations are obtained.
We will clarify the concept of engine nodes in this section by going through the process of creating the engine nodes for the OdeEngine.
This Engine allows to simulate systems based on ordinary differential equations (ODEs).
In the engine nodes for the OdeEngine, we will define how inputs and outputs are send to and from the OdeEngine.
We will define three classes: OdeOutput, OdeInput and ActionApplied.
Each of these classes will be a subclass of the EngineNode class.
Here we will go into detail on how to the OdeInput EngineNode is created.

Full code is available here. [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]

[image: alternate text]
In this section we will discuss the concept of a EngineNode.
In the engine nodes, we create an implementation of actuators and sensors for a specific Engine.
The EngineNode can be added to an EngineGraph.

OdeInput

First we will define an EngineNode for setting the input for the OdeEngine.
We can do this by using the EngineNode base class.
For the EngineNode base class, there are four abstract methods:

	spec(), here we will specify the parameters of OdeInput.

	initialize(), here we will specify how the OdeInput node is initialized.

	reset(), here we will specify how to reset the state of the OdeInput node.

	callback(), here we will define what this node will do every clock tick.
In this case, it will use the last input/action in the OdeEngine node.

spec

The spec() method can be used to specify default parameters for engine nodes and to assign an id to the node.
Since we need a reference to the simulator (the OdeEngine), we will also specify here that we run this node in the engine process per default.
If this node is run in another process, we won’t have a reference to the simulator attribute from the OdeEngine and will not be able to pass inputs easily to the OdeEngine node.
We also specify that this node has two input and one output, which respectively are “tick”, “action” and “action_applied”.
The “tick” input is required, since it ensures that the OdeInput EngineNode is synchronized with the OdeEngine Engine.
Also, we add a custom parameter called default_action, which will allow to specify a default action that will be applied in case it is not overwritten.
The spec method now looks as follows:

from typing import Optional, List
import numpy as np

IMPORT ROS
from std_msgs.msg import UInt64, Float32MultiArray

IMPORT EAGERX
from eagerx.core.constants import process
from eagerx.utils.utils import Msg
from eagerx.core.entities import EngineNode
import eagerx.core.register as register

class OdeInput(EngineNode):
 @staticmethod
 @register.spec("OdeInput", EngineNode)
 def spec(
 spec,
 name: str,
 rate: float,
 default_action: List,
 color: Optional[str] = "green",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate # Rate at which the callback is called
 spec.config.process = process # This should always be the process of the Engine
 spec.config.inputs = ["tick", "action"] # Set default inputs
 spec.config.outputs = ["action_applied"] # Set default outputs

 # Set custom node params
 spec.config.default_action = default_action

Note

Note the use of the spec() decorator to register the id of this EngineNode.
This basically allows to use this node in objects using the id.

initialize

Next, we will implement the initialize() method.
In this method we will set the object name, the default action and check whether the node is launched in the correct process:

def initialize(self, default_action):
 assert (
 self.process == process.ENGINE
), "Simulation node requires a reference to the simulator, hence it must be launched in the Engine process"
 self.obj_name = self.config["name"]
 self.default_action = np.array(default_action)

Note

Note that the parameter default_action, which we added to the spec object of type NodeSpec becomes an argument to the initialize() method.

reset

We will use the reset() method to reset the object’s input to the default input:

@register.states()
 def reset(self):
 self.simulator[self.obj_name]["input"] = np.squeeze(np.array(self.default_action))

Note

Since we do not want the OdeInput to have any states to reset, the states() decorator is used without any arguments.

callback

At the specified rate of the OdeInput node, the callback() function will be called.
In this callback we want to update the action that will be applied by the OdeEngine based on the latest action we have received.
Here, we will also define the inputs and outputs of the OdeInput node and their message types.
This is necessary in order to set up communication pipelines in the background.
In our case, the inputs are the engine tick “tick” with message type UInt64 and the action “action” which will be a Float32MultiArray.
In code, this is implemented as follows:

@register.inputs(tick=UInt64, action=Float32MultiArray)
@register.outputs(action_applied=Float32MultiArray)
def callback(
 self,
 t_n: float,
 tick: Optional[Msg] = None,
 action: Optional[Float32MultiArray] = None,
):
 # Set action in simulator for next step.
 self.simulator[self.obj_name]["input"] = np.squeeze(action.msgs[-1].data)

 # Send action that has been applied.
 return dict(action_applied=action.msgs[-1])

Note

Note that the message type as provided using the inputs() and outputs() decorators, should be ROS message types.
For more information, see the documentation on callback().
Also, the “tick” input ensures that this callback() is synchronized with the Engine.

Similarly, we can create the engine nodes OdeOutput and ActionApplied for obtaining the output from the OdeEngine simulator and obtaining the value for the action that is applied.
The ActionApplied will allow other nodes to listen to the action that is applied in the simulator.
This can be useful for example when some form of preprocessing is applied on the action before it is applied to the environment.
Then, this node can be used to feedback the applied action as an observation to the environment.

 Graph

Graph

In this section we will discuss the concept of a Graph.
A Graph object can be created to connect inputs and outputs of different entities of types Node, ResetNode and Object.
This Graph can be used to initialize an BaseEnv.
Here, we will show an example of how to create such a Graph.
We will connect a Pendulum [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py] Object and ButterworthFilter [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py] Node.
Also, we will render the Pendulum object, using the render() method.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/examples/example_ode.py]

[image: alternate text]
In this section we will discuss the concept of a Graph.
A Graph consists of a collection of entities of type Node and Object.
The graph is engine-agnostic and should be provided to the BaseEnv, such that communication pipelines can be set up correctly.

ROS packages required
from eagerx import Object, Engine, Node, initialize, log, process

initialize("eagerx_core", anonymous=True, log_level=log.INFO)

Environment
from eagerx.core.env import EagerxEnv
from eagerx.core.graph import Graph
from eagerx.wrappers import Flatten

Implementation specific
import eagerx.nodes # Registers butterworth_filter
import eagerx_ode # Registers OdeEngine
import eagerx_dcsc_setups.pendulum # Registers Pendulum

if __name__ == "__main__":
 # Define rate (depends on rate of ode)
 rate = 30.0

 # Initialize empty graph
 graph = Graph.create()

 # Create pendulum
 pendulum = Object.make("Pendulum", "pendulum", render_shape=[480, 480], sensors=["pendulum_output", "action_applied"],
 states=["model_state", "model_parameters"])
 graph.add(pendulum)

 # Create Butterworth filter
 bf = Node.make("ButterworthFilter", name="bf", rate=rate, N=2, Wn=13, process=process.NEW_PROCESS)
 graph.add(bf)

 # Connect the nodes
 graph.connect(action="action", target=bf.inputs.signal)
 graph.connect(source=bf.outputs.filtered, target=pendulum.actuators.pendulum_input)
 graph.connect(source=pendulum.sensors.pendulum_output, observation="observation", window=1)
 graph.connect(source=pendulum.sensors.action_applied, observation="action_applied", window=1)

 # Add rendering
 graph.add_component(pendulum.sensors.image)
 graph.render(source=pendulum.sensors.image, rate=10, display=True)

Note

An Object can be created using the make() method.
Note that in order to be able to make the Pendulum Object, we need to import it: import eagerx_dcsc_setups.pendulum.
This also holds for creating a Node using make() method: import eagerx.nodes # Registers butterworth_filter.
Furthermore, note that we first call the initialize() function.
This starts a roscore and allows to initialize the communication pipelines.
Also can be seen here that nodes and objects can be added to the Graph using the add() method.
Furthermore, nodes and objects can be connected using the connect method.
For this method it is worth mentioning that if the action or observation argument is specified, the agent’s action or obeservation space will be extended with that action or observation.
The appropriate agent’s action and observation spaces [https://gym.openai.com/docs/#spaces] can be created if a SpaceConverter is defined for the connected actuators, sensors, inputs or outputs.

GUI

Having created the Graph, we can inspect it using the GUI [https://github.com/eager-dev/eagerx_gui].
Note that we need to install it first if you haven’t done so yet:

pip install eagerx-gui

Next, we can open it by calling gui():

graph.gui()

By clicking on Show Graph, we can inspect the graph in the GUI.
The output you will see should look something like this:

[image: alternate text]

Screenshot of the EAGERx GUI.

Note

The GUI also provides functionalities for constructing a Graph.
So we could also have created the exact same Graph from scratch using the GUI.

 Pendulum Swing Up (Advanced)

Pendulum Swing Up (Advanced)

Table of Contents

	Introduction
	Objectives

	Simulating the Pendulum
	Creating the OdeEngine

	Template
	Poetry

	Black

	pytest

	Engine
	Engine Nodes

	Implementing the real Pendulum

	Space Converter
	MSG_TYPE_A and MSG_TYPE_B

	spec

	initialize

	get_space

	A_to_B

	B_to_A

	make

	Node
	spec

	initialize

	reset

	callback

	Creating an Object
	Agnostic

	Engine-Specific (OdeEngine)

	Engine Graph

	Engine-Specific (RealEngine)

	Training
	Graph

	Learn

 Introduction

Introduction

In this tutorial we will go through the process of learning a pendulum to swing up using EAGERx.
We will touch upon the following subjects in this tutorial:

	How to create an engine

	How to create an object

	How to create a space converter

	How to use the GUI

	How to create a Graph

	How to learn a policy using your environment

Objectives

Our aim is to create an implementation of a pendulum system we have in our lab and perform experiments with it in EAGERx.
This pendulum system is often used in our department for performing experiment, e.g. for evaluating novel algorithms.
It is non-trivial to design a controller that swings up the pendulum from an arbitrary state and to stabilize it in the upright position, due to nonlinear dynamics and underactuation.
Because of this, it is also an interesting problem!

We would like to achieve the following objectives:

	We want to be able to simulate experience in simulation, since real-world interactions are time consuming and result in wear and tear.

	We want to be able to fuse experience from simulation and from the real system.

	We want to have an implementation that is modular, such that it can be used easily for other experiments.

 Learn

Learn

Next, we will train and hope to see the pendulum swing up in the end!
First we will train in simulation and afterwards we will fine tune the policy on the real system, since we will probably have some model inaccuracies.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/examples/example_real.py]

Initialize the Engines

After creating the Graph, we will also make() the OdeEngine and RealEngine.

Define engines
engine_ode = Engine.make('OdeEngine', rate=rate, sync=True, real_time_factor=0, process=process.NEW_PROCESS)
engine_real = Engine.make('RealEngine', rate=rate, sync=True, process=process.NEW_PROCESS)

EagerxEnv

Next, we will create a step function.
Here we will calculate the reward and check for termination conditions.
We terminate the episode if the number of steps is larger than 500.

Define step function
def step_fn(prev_obs, obs, action, steps):
 state = obs["observation"][0]
 # Calculate reward
 sin_th, cos_th, thdot = state
 th = np.arctan2(sin_th, cos_th)
 cost = th ** 2 + 0.1 * (thdot / (1 + 10 * abs(th))) ** 2
 # Determine done flag
 done = steps > 500
 # Set info:
 info = dict()
 return obs, -cost, done, info

Note

We can obtain the angular position and angular velocity from the obs dictionary.
Remember that we used the connect() method with value for the argument observation set to “observation”.
Therefore, we this data is stored under the key “observation”.

We will then initialize two times a BaseEnv: one with the OdeEngine and one with the RealEngine.

Initialize Environment
real_env = Flatten(EagerxEnv(name='real', rate=rate, graph=graph, engine=engine_real, step_fn=step_fn))
simulation_env = Flatten(EagerxEnv(name='ode', rate=rate, graph=graph, engine=engine_ode, step_fn=step_fn))

Train in Simulation

Now we will train in simulation!
We will do this for 450 seconds and save the resulting model.

Initialize learner (kudos to @araffin)
model = sb.SAC("MlpPolicy", simulation_env, verbose=1)

First train in simulation
simulation_env.render('human')
model.learn(total_timesteps=int(450*rate))
simulation_env.close()

Evaluate for 30 seconds in simulation
rospy.loginfo('Start simulation evaluation!')
obs = simulation_env.reset()
for i in range(int(30 * rate)):
 action, _states = model.predict(obs, deterministic=True)
 obs, reward, done, info = simulation_env.step(action)
 if done:
 obs = simulation_env.reset()

model.save('simulation')
simulation_env.shutdown()

Fine Tuning in Reality

We can load the saved model and fine tune it on the real system in order to successfully swing up the real pendulum.

Train on real system
model = sb.SAC.load('simulation', env=real_env, ent_coef="auto_0.1")
real_env.render('human')

Evaluate on real system
rospy.loginfo('Start zero-shot evaluation!')
obs = real_env.reset()
for i in range(int(90 * rate)):
 action, _states = model.predict(obs, deterministic=True)
 obs, reward, done, info = real_env.step(action)
 real_env.render()
 if done:
 obs = real_env.reset()

Fine-tune policy
rospy.loginfo('Start fine-tuning!')
model.learn(total_timesteps=int(1020*rate))
model.save('real')

Evaluate on real system
rospy.loginfo('Start fine-tuned evaluation!')
obs = real_env.reset()
while True:
 action, _states = model.predict(obs, deterministic=True)
 obs, reward, done, info = real_env.step(action)
 real_env.render()
 if done:
 obs = real_env.reset()

And that is it!
We have trained a policy in simulation and fine tuned it on the real system.

 Node

Node

In this section, we will discuss the concept of a Node.
A node can be used to process data at a desired rate.
This could for example be a classifier to detect objects in an image or a PID controller that reduces a control error.
Here, we will go through the process of creating such a Node.
We will create the ButterworthFilter Node, which can be used to filter signals.

The Node base class has four abstract methods we need to implement:

	spec

	initialize

	reset

	callback

Full code is available here. [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py]

[image: alternate text]
In this section we will discuss the concept of a Node.
It can be added to a Graph and is engine-agnostic.

spec

Here we define the specification of the ButterworthFilter.
Since we will make use of the Butterworth filter implementation from scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html], we want to initialize the node with the arguments of this implementation.
Because the signature of the initialize() is defined within the spec() method, we add the parameters N, Wn and btype to the config.
These are the order of the filter, the critical frequency of the filter and the filter type, respectively.
Furthermore, we add a converter to the NodeSpec of the ButterworthFilter, since we want to apply this filter on a scalar signal, while the input to the filter might be multidimensional.
Therefore, we make use of the GetIndex_Float32MultiArray Processor, which selects the entry of a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html].
Finally, we will set a SpaceConverter, such that we can directly connect() the ButterworthFilter to an action without having to define the OpenAI Gym Space [https://gym.openai.com/docs/#spaces] every time.

from typing import Optional
from scipy.signal import butter, sosfilt

IMPORT ROS
from std_msgs.msg import Float32MultiArray

IMPORT EAGERX
import eagerx.core.register as register
from eagerx.utils.utils import Msg
from eagerx.core.entities import Node, Processor, SpaceConverter
from eagerx.core.constants import process

class ButterworthFilter(Node):
 @staticmethod
 @register.spec("ButterworthFilter", Node)
 def spec(
 spec,
 name: str,
 rate: float,
 index: int = 0,
 N: int = 2,
 Wn: float = 1,
 btype: str = "lowpass",
 process: Optional[int] = process.NEW_PROCESS,
 color: Optional[str] = "grey",
):
 # Modify default node params
 spec.config.name = name
 spec.config.rate = rate
 spec.config.process = process
 spec.config.color = color
 spec.config.inputs = ["signal"]
 spec.config.outputs = ["filtered"]

 # Modify custom node params
 spec.config.N = N # The order of the filter.
 spec.config.Wn = Wn # The critical frequency or frequencies.
 spec.config.btype = btype # {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’} The type of filter. Default is ‘lowpass’.

 # Add converter & space_converter
 spec.inputs.signal.window = "$(config N)"
 spec.inputs.signal.converter = Processor.make("GetIndex_Float32MultiArray", index=index)
 spec.inputs.signal.space_converter = SpaceConverter.make("Space_Float32MultiArray", [-3], [3], dtype="float32")

Note

Mind the usage of the spec() decorator.
This specifies the ID of the Node.
Also, mind the way the window is set.
Here we specify that the window size is equal to the parameter N, which is the order of the filter.
The syntax $(config [parameter_name]) allows to use a parameter as variable for setting another parameter.

initialize

Within the initialize() method, we will initialize the filter.

def initialize(self, N, Wn, btype):
 for i in self.inputs:
 if i["name"] == "signal":
 assert (
 int(i["window"]) >= N
), "The window size of the signal {} is too small to create a filter with order {}.".format(i["window"], N)
 self.filter = butter(N, Wn, btype, output="sos", fs=self.rate)
 self.N = N

Note

Mind that the signature of the initialize() method is specified by adding parameters to config wihtin spec().

reset

The reset() method is called by the user at the beginning of an episode.
Here the state of the Node can be reset.
However, in our case this is not needed.

@register.states()
def reset(self):
 pass

Note

Mind the usage of the states() decorator.
If the Node would have had a state that should be reset, it should be registered here.
We leave it empty because there is no state to reset.

callback

The callback() method is called with at the rate of the Node.
This is were the actual signal processing takes place.

@register.inputs(signal=Float32MultiArray)
@register.outputs(filtered=Float32MultiArray)
def callback(self, t_n: float, signal: Optional[Msg] = None):
 msgs = signal.msgs

 # Only apply filtering if we have received enough messages (more than the order of the filter)
 if len(msgs) >= self.N:
 unfiltered = [msgs[i].data[0] for i in range(-self.N, 0)]
 filtered = msgs[-1].data if None in unfiltered else [sosfilt(self.filter, unfiltered)[-1]]
 # If we haven't received enough messages, no filtering is applied
 elif len(msgs) > 0:
 filtered = msgs[-1].data
 # If no messages were received, return 0.0
 else:
 filtered = [0.0]
 return dict(filtered=Float32MultiArray(data=filtered))

Note

Mind the usage of the inputs() and outputs() decorators.
These register the inputs inputs and outputs of the Node and their message types.
Also, note that the callback() method has the t_n argument, which is the time passed (seconds) since last reset.

 Template

Template

We will start by creating a new repository for this Python package, using the template that is available here [https://github.com/eager-dev/eagerx_template].

[image: alternate text]

Screenshot of the EAGERx template package on Github.

As you can see, this template repository already contains some folders and files.
The main benefit of using this template, is that it facilitates to perform continuous integration and provides a clear code structure.
Since the package is just a Python package in the end, any other Python package structure could be used.

In our case, we create a new repository called eagerx_ode [https://github.com/eager-dev/eagerx_ode] using this template.
Since we want to create a package named eagerx_ode and not eagerx_template, we do the following:

	Rename the folder eagerx_template to eagerx_ode.

	Update the PACKAGE_NAME variable in Makefile to be eagerx_ode instead of eagerx_template.

Poetry

Next we will create a Python package using Poetry [https://python-poetry.org/].
If you are not familiar with Poetry, we recommend to check out this article [https://nanthony007.medium.com/stop-using-pip-use-poetry-instead-db7164f4fc72].
It is a very convenient tool for package management.
In the remainder of this section it is assumed that Poetry is installed.

Next, we modify the pyproject.toml [https://github.com/eager-dev/eagerx_template/blob/master/pyproject.toml] file to specify dependencies, add a short description, state the authors of the package etc. .
Here we specify scipy as dependencies, since we will be using scipy to perform the integration of the ODEs.
This results following pyproject.toml [https://github.com/eager-dev/eagerx_ode/blob/master/pyproject.toml].

Now we are ready to start coding! Note that you can always add or update dependencies later using Poetry.

After adding the source code, installing the package is simple (from the root of the repository):

poetry install

Note

This will install the package and its dependencies in a virtual environment, see https://python-poetry.org/docs/basic-usage/#using-your-virtual-environment.

Black

In the eagerx_template, we also make use of black [https://black.readthedocs.io/en/stable/].
According to their docs:

“By using Black, you agree to cede control over minutiae of hand-formatting.
In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.”

It allows to automatically format your code such that it satisfies the Black code style requirements and allows to check these.
In the eagerx_template this can be done as follows.
First, we install the package using Poetry:

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we can format the code using black:

make codestyle

Also, we can check the code style:

make check-codestyle

Note

A number of Github workflows are present within the eagerx_template.
One of them checks for code style using Black.
Therefore, when using this template for a public Github repository, don’t forget to run:
make codestyle before pushing your code.

pytest

Also, the eagerx_template allows to easily add tests using pytest [https://docs.pytest.org/].
You can add your own tests to the tests folder [https://github.com/eager-dev/eagerx_template/tree/master/tests].
Only a dummy test is currently present here [https://github.com/eager-dev/eagerx_template/blob/master/tests/test_import.py].
You can run the test as follows (from the root of the repository):

First, we install the package using Poetry (if you haven’t done so yet):

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we run the tests:

make pytest

Note

A number of Github workflows are present within the eagerx_template.
One of them checks if the tests are passing.
So before pushing your code, you can check whether the tests are passing locally by running make pytest.

Note

Be aware that in order to use a Node, EngineNode or any other enitity from eagerx.core.entities you have created, that they should be imported before making them using make() with the corresponding ID.
Therefore, we advice to import these in the __init__.py as is done for example here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/__init__.py].

 Creating an Object

Creating an Object

In this section, we will discuss the concept of Object within EAGERx by going through the steps of creating the Pendulum object.
For this Pendulum Object we will create two engine implementations, i.e. for the OdeEngine [https://github.com/eager-dev/eagerx_ode] and for the RealEngine [https://github.com/eager-dev/eagerx_reality].
This will allow us to use the same Object for both simulated and real experiments.
We will start by implementing the agnostic part of the Pendulum (stuff that is independent from the Engine that is used).
Next, we will implement everything related to the OdeEngine and finally we create the implementation for the RealEngine.

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

[image: alternate text]
In this section we will discuss the concept of a Object.
An Object consists of a collection of actuators, sensors and states.
Within the Object, we also define the EngineGraph by creating a graph of nodes of type EngineNode for each physics engine.

Table of Contents

	Agnostic
	agnostic

	spec

	Engine-Specific (OdeEngine)
	ode_engine

	Engine Graph
	Constructing the EngineGraph

	Visualization and Validation

	Engine-Specific (RealEngine)
	real_engine

 Agnostic

Agnostic

Each Object requires an agnostic implementation.
With agnostic, we mean agnostic to the type of engine that is used.
This concerns for example the action and observation spaces of the Object, which are the same no matter whether the system is simulated or not.

An Object has two abstract classes:

	agnostic()

	spec()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

agnostic

The agnostic() method should be used for defining the information that is agnostic of the engine that is being used.
Here we specify what actuators, sensors and states the Object has.
An actuator can be used to apply an action in the environment, a sensor can obtain observations, while a state is something that can be reset before starting an episode.
In our case, we have three sensors (pendulum_output, action_applied and image), one actuator (pendulum_input) and two states (model_state, model_parameters).
We use the model_state to reset the angle and angular velocity of the pendulum during a reset, while we use the model_parameters state to randomize the model parameters over the episodes in order to improve robustness against model inaccuracies.
Furthermore, the agnostic() method should be used to define all agnostic config parameters.
These are the parameters that are independent of the Engine that is used.
We will set the agnostic parameters for each of the actuators, sensors and states, i.e. rates, windows and space converters.
The rates define at which rate the callback of that entity is called, window sizes determine the window size for incoming messages, while space converters define how to convert the messages to an OpenAI Gym space [https://gym.openai.com/docs/#spaces].
More information on these parameters is available at the API Reference sections on actuators, sensors and states.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray
from sensor_msgs.msg import Image

EAGERx IMPORTS
from eagerx_reality.engine import RealEngine
from eagerx_ode.engine import OdeEngine
from eagerx import Object, EngineNode, SpaceConverter, EngineState, Processor
from eagerx.core.specs import ObjectSpec
from eagerx.core.graph_engine import EngineGraph
import eagerx.core.register as register

class Pendulum(Object):
 entity_id = "Pendulum"

 @staticmethod
 @register.sensors(pendulum_output=Float32MultiArray, action_applied=Float32MultiArray, image=Image)
 @register.actuators(pendulum_input=Float32MultiArray)
 @register.engine_states(model_state=Float32MultiArray, model_parameters=Float32MultiArray)
 @register.config(always_render=False, render_shape=[480, 480], camera_index=0)
 def agnostic(spec: ObjectSpec, rate):
 """Agnostic definition of the Pendulum"""
 # Register standard converters, space_converters, and processors
 import eagerx.converters # noqa # pylint: disable=unused-import

 # Set observation properties: (space_converters, rate, etc...)
 spec.sensors.pendulum_output.rate = rate
 spec.sensors.pendulum_output.space_converter = SpaceConverter.make(
 "Space_AngleDecomposition", low=[-1, -1, -9], high=[1, 1, 9], dtype="float32"
)

 spec.sensors.action_applied.rate = rate
 spec.sensors.action_applied.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 spec.sensors.image.rate = 15
 spec.sensors.image.space_converter = SpaceConverter.make(
 "Space_Image", low=0, high=1, shape=spec.config.render_shape, dtype="float32"
)

 # Set actuator properties: (space_converters, rate, etc...)
 spec.actuators.pendulum_input.rate = rate
 spec.actuators.pendulum_input.window = 1
 spec.actuators.pendulum_input.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3], high=[3], dtype="float32"
)

 # Set model_state properties: (space_converters)
 spec.states.model_state.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=[-3.14159265359, -9], high=[3.14159265359, 9], dtype="float32"
)

 # Set model_parameters properties: (space_converters) # [J, m, l, b0, K, R, c, a]
 fixed = [0.000189238, 0.0563641, 0.0437891, 0.000142205, 0.0502769, 9.83536, 1.49553, 0.00183742]
 diff = [0, 0, 0, 0.08, 0.08, 0.08, 0.08] # Percentual delta with respect to fixed value
 low = [val - diff * val for val, diff in zip(fixed, diff)]
 high = [val + diff * val for val, diff in zip(fixed, diff)]
 # low = [1.7955e-04, 5.3580e-02, 4.1610e-02, 1.3490e-04, 4.7690e-02, 9.3385e+00, 1.4250e+00, 1.7480e-03]
 # high = [1.98450e-04, 5.92200e-02, 4.59900e-02, 1.49100e-04, 5.27100e-02, 1.03215e+01, 1.57500e+00, 1.93200e-03]
 spec.states.model_parameters.space_converter = SpaceConverter.make(
 "Space_Float32MultiArray", low=low, high=high, dtype="float32"
)

Note

Mind the use of the sensors(), actuators() and engine_states() decorators.
Registration is required to be able to set the parameters within the ObjectSpec.
The config() decorator registers the agnostic configuration parameters of the Object.
These agnostic configuration parameters define the signature of the spec() method, which we will see in the next subsection.
Also, note that we import eagerx.converters.
While it might look like this import is unused, it actually registers the converters from that module, such that we can use them.
The Space_Float32MultiArray and Space_Image can therefore be used.
The Space_AngleDecomposition space converter can be used because it is imported during initialization of the package in which the object is defined.
This space converter is defined here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

spec

The ObjectSpec() specifies how BaseEnv should initialize the object.
Here we can for example specify what actuators, sensors and states should be used by default, because this does not necessarily have to be all of them.
Per default, we will e.g. use the model_state EngineState only.

@staticmethod
@register.spec(entity_id, Object)
def spec(
 spec: ObjectSpec, name: str, sensors=None, states=None, rate=30, always_render=False, render_shape=None, camera_index=2
):
 """Object spec of Pendulum"""
 # Modify default agnostic params
 # Only allow changes to the agnostic params (rates, windows, (space)converters, etc...
 spec.config.name = name
 spec.config.sensors = sensors if sensors else ["pendulum_output", "action_applied", "image"]
 spec.config.actuators = ["pendulum_input"]
 spec.config.states = states if states else ["model_state"]

 # Add registered agnostic params
 spec.config.always_render = always_render
 spec.config.render_shape = render_shape if render_shape else [480, 480]
 spec.config.camera_index = camera_index

 # Add engine implementation
 Pendulum.agnostic(spec, rate)

Note

Mind the usage of the spec() for initialization of the ObjectSpec.
Also, the parameters that were added to the config() (always_render, render_shape, camera_index), become arguments to the spec() method.

 Engine-Specific (RealEngine)

Engine-Specific (RealEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the RealEngine [https://github.com/eager-dev/eagerx_reality].

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py]

real_engine

Engine-specific can be created by adding a method to an Object, e.g. example_engine().
In this case, we create an implementation for the RealEngine, to be able to perform experiments with the real system.
For this, we use the engine nodes that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_nodes.py].
Also, we will be using the engine states that we have created here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_states.py].
Finally, we will construct an EngineGraph with the created nodes.

@staticmethod
@register.engine(entity_id, RealEngine) # This decorator pre-initializes engine implementation with default object_params
def real_engine(spec: ObjectSpec, graph: EngineGraph):
 """Engine-specific implementation (RealEngine) of the object."""
 # Import any object specific entities for this engine
 import eagerx_dcsc_setups.pendulum.real # noqa # pylint: disable=unused-import

 # Couple engine states
 spec.RealEngine.states.model_state = EngineState.make("RandomActionAndSleep", sleep_time=1.0, repeat=1)

 # Create sensor engine nodes
 obs = EngineNode.make("PendulumOutput", "pendulum_output", rate=spec.sensors.pendulum_output.rate, process=0)
 applied = EngineNode.make("ActionApplied", "applied", rate=spec.sensors.action_applied.rate, process=0)
 image = EngineNode.make(
 "CameraRender",
 "image",
 camera_idx=spec.config.camera_index,
 shape=spec.config.render_shape,
 rate=spec.sensors.image.rate,
 process=0,
)

 # Create actuator engine nodes
 action = EngineNode.make("PendulumInput", "pendulum_input", rate=spec.actuators.pendulum_input.rate, process=0)

 # Connect all engine nodes
 graph.add([obs, applied, image, action])
 graph.connect(source=obs.outputs.pendulum_output, sensor="pendulum_output")
 graph.connect(source=action.outputs.action_applied, target=applied.inputs.action_applied, skip=True)
 graph.connect(source=applied.outputs.action_applied, sensor="action_applied")
 graph.connect(source=image.outputs.image, sensor="image")
 graph.connect(actuator="pendulum_input", target=action.inputs.pendulum_input)

Note

Mind the use of the engine() decorator, which creates the link to the corresponding engine.
Therefore, the name of the real_engine method is irrelevant, i.e. the link to the RealEngine is defined by the aforementioned decorator.
Also note that we are importing eagerx_dcsc_setups.pendulum.real.
During the import, the engine nodes of this module are registered and therefore we can use the make() and make() methods with the IDs to create these nodes (e.g. PendulumOutput).

 Engine-Specific (OdeEngine)

Engine-Specific (OdeEngine)

Having defined the agnostic parameters of the Pendulum, we can now specify the engine-specific implementations.
In this case, we will create an implementation for the *OdeEngine* [https://github.com/eager-dev/eagerx_ode].

ode_engine

Engine-specific implementations can be created by adding a method to an Object, e.g. example_engine().
Here we will define which EngineNode and EngineState will be used for which actuators, sensors and states.
In our case, we will use the OdeParameters and OdeEngineState (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_states.py]) for the model_parameters and model_state states, respectively.
We will use the OdeOutput, ActionApplied and OdeInput (which are defined here [https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/engine_nodes.py]) for the pendulum_output sensor, the action_applied and pendulum_input actuators, respectively.
Also, the image sensor will render the pendulum.
For this, we will make use of the PendulumImage engine_node (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/engine_nodes.py]).
For creating these states and nodes, we use the make() and make() methods.
Furthermore, we specify where the ODE of the pendulum can be found (which is defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/ode/pendulum_ode.py]).
Finally, after creating these nodes, we construct an EngineGraph using these nodes by connecting them to each other.

 Implementing the real Pendulum

Implementing the real Pendulum

Now that we have an implementation for the pendulum in simulation, we are ready to create an implementation for the real system.
For this we will use the *RealEngine* [https://github.com/eager-dev/eagerx_reality].
This engine can be used as an interface to real-world systems.
In order to be able to use the real pendulum system in EAGERx, we need to create an EngineNode for each actuator and sensor we have.
Also, we need to create an EngineState for each state we want to reset.
In our case, we will create a PendulumInput actuator and a PendulumOutput sensor, which are defined here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_nodes.py].
The PendulumInput EngineNode is responsible for sending commands to the pendulum system, while PendulumOutput is responsible for reading the sensor data.
These two engine nodes will communicate with a ROS interface we have created for the system [https://github.com/eager-dev/dcsc_setups].
Also, we create an EngineState for resetting the system.
This “reset” will send a random action to the system and sleep afterwards.
Therefore, we call this EngineState RandomActionAndSleep, for which the code can be found here [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/real/engine_states.py].

Next, we will create a SpaceConverter, which will allow us to use the decomposed angle as an observation, instead of the wrapped angle.
This will most likely result in faster training times, because the wrapped angle has discontinuities which frustrate learning.

Furthermore, we will create a Node that will allow to preprocess the actions that we send to the pendulum system.
That is to say, we don’t want to send high frequency voltage signals to the DC motor of the pendulum system, because it might damage the system.
Therefore, we will create a low-pass Butterworth filter node, that will prevent sending high frequency voltage signals.

 Simulating the Pendulum

Simulating the Pendulum

We want to be able to simulate the dynamics of the pendulum, such that we can train in simulation.
In this way, we will be able to obtain a policy in simulation that we can later fine tune on the real system.
The dynamics of a pendulum are well understood.
Therefore, we can express the dynamics of the pendulum as ordinary differential equations (ODEs) and use existing ODE solvers to simulate dynamics.
In order to have a generic implementation that can be used for other systems as well, we will create an engine that simulates a system based on a given ODE.
We will call this engine the OdeEngine.
In the following section we will show how this engine is created.

Creating the OdeEngine

In this section we will describe how to create an EAGERx package, in this case the eagerx_ode package.
Since the OdeEngine will be a generic engine that can be useful for others, we will create a public repository for the OdeEngine.
We will start by creating a new repository for this Python package, using the template that is available here [https://github.com/eager-dev/eagerx_template].

 Space Converter

Space Converter

In this section we will discuss the concept of a SpaceConverter.
A space converter can be used to create Openai Gym Spaces [https://gym.openai.com/docs/#spaces] for messages and define how we can convert them from and to a numpy.ndarray, which is the default data type in OpenAI Gym.
In this section we will go through the process of creating the Space_AngleDecomposition, which will allow to convert a Float32MultiArray to a numpy.ndarray.
At the same time, we will decompose one of the entries of the Float32MultiArray into a sine and cosine component.
This space converter can be used when dealing with angular positions, since learning on the sine and cosine is often more efficient due to the discontinuities in the angular position.

The SpaceConverter base class has two class variables:

	MSG_TYPE_A

	MSG_TYPE_B

and has 5 abstract methods:

	spec()

	initialize()

	get_space()

	A_to_B()

	B_to_A()

Full code is available here. [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/converters.py]

MSG_TYPE_A and MSG_TYPE_B

The class variables MSG_TYPE_A and MSG_TYPE_B specify the two message types that will be converted from one into the other.
For the Gym space, we need an numpy.ndarray, so MSG_TYPE_A will be of this type.
The second message type will be a Float32MultiArray [http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Float32MultiArray.html], since this ROS message can be used for multidimensional data communication over ROS topics.

ROS IMPORTS
from std_msgs.msg import Float32MultiArray

RX IMPORTS
import eagerx.core.register as register
from eagerx import Processor, SpaceConverter
from eagerx.core.specs import ProcessorSpec
import numpy as np
from gym.spaces import Box

class Space_AngleDecomposition(SpaceConverter):
 MSG_TYPE_A = np.ndarray
 MSG_TYPE_B = Float32MultiArray

spec

The spec() method can be used to specify with which arguments the SpaceConverter will be initialized.
In our case, we add low, high and dtype to the config.

@staticmethod
@register.spec("Space_AngleDecomposition", SpaceConverter)
def spec(spec: ProcessorSpec, low=None, high=None, dtype="float32"):
 spec.config.update(low=low, high=high, dtype=dtype)

Note

Mind the use of the spec() decorator.

initialize

Next, we implement the initialize() method.
Here, the arguments are the ones we have just defined in the spec() method: low, high and dtype.

def initialize(self, low=None, high=None, dtype="float32"):
 self.low = np.array(low, dtype=dtype)
 self.high = np.array(high, dtype=dtype)
 self.dtype = dtype

get_space

The get_space() method should be used to define the Gym space.

def get_space(self):
 return Box(self.low, self.high, dtype=self.dtype)

A_to_B

The A_to_B() method takes as an argument a message of type MSG_TYPE_A and converts it into MSG_TYPE_B.

def A_to_B(self, msg):
 return Float32MultiArray(data=msg)

B_to_A

The B_to_A() method takes as an argument a message of type MSG_TYPE_B and converts it into MSG_TYPE_A.
In our case, we also decompose the angle here, which will be the first entry of the array.

def B_to_A(self, msg):
 angle = msg.data[0]
 return np.concatenate(([np.sin(angle), np.cos(angle)], msg.data[1:]), axis=0)

make

In order to use this SpaceConverter, the user should call the make() method with the arguments of the spec() method.

 Training

Training

Having created the OdeEngine [https://github.com/eager-dev/eagerx_ode] Engine, the Pendulum [https://github.com/eager-dev/eagerx_dcsc_setups/blob/master/eagerx_dcsc_setups/pendulum/objects.py] Object and the ButterworthFilter [https://github.com/eager-dev/eagerx/blob/master/eagerx/nodes/butterworth_filter.py] Node, we can bring everything together and start to train a policy.
We will do this by first creating a Graph, then inspect it using the GUI [https://github.com/eager-dev/eagerx_gui] and finally train a policy using Stable-Baselines3 [https://stable-baselines3.readthedocs.io/en/master/].

Table of Contents

	Graph
	GUI

	Learn
	Initialize the Engines

	EagerxEnv

	Train in Simulation

	Fine Tuning in Reality

_images/crazyfly_real.gif

_images/crazyfly_sim.gif

_images/eagerx_template.png
£ master - § 3branches ©0tags Gotofle | Addfie~ Code~

Jelle Luijkx ci: not publishing code on codeclimate 9520c31 yesterday {D) 13 commits
B githubiworkflows ci: not publishing code on codecimate yesterday
M eagerx_template Create template 7 days ago
M scripts Create template 7 days ago
W tests Create template 7 days ago
O .coveragerc Create template 7 days ago
O giignore Iniial commit 13 days ago
[LICENSE Iniial commit 13 days ago
[Makefile Create template 7 days ago
[READMErst docs: Update README yesterday
O setup.cig Create template 7 days ago

README rst Vi

EAGERx Template Package

_images/example_gui.png
env/actions
action|

signal

bf

mm-\.

pendulum
pendulum_input pendulum_output

action_applied
image|
model state|

model_parameters|

env/observations
observation

action_applied

env/render
image

nav.xhtml

 Table of Contents

 		
 What is EAGERx

 		
 Getting Started

 		
 Installing EAGERx

 		
 Installation using pip

 		
 Installation from source

 		
 Installation using Docker (with distributed support)

 		
 Installation Using Conda (with distributed support)

 		
 Extras: GUI

 		
 Extras: training visualization

 		
 Other Dependencies

 		
 Poetry

 		
 ROS1

 		
 Tutorials

 		
 Colabs

 		
 Introduction to EAGERx

 		
 Developer Tutorials

 		
 Visualizing your environment

 		
 Graphical user interface

 		
 Live-plotting

 		
 Computation graph

 		
 Distributed

 		
 API Reference

 		
 Engine

 		
 Engine

 		
 Backend

 		
 Backend

 		
 Processor

 		
 Processor

 		
 Engine State

 		
 EngineState

 		
 Nodes

 		
 Node

 		
 Engine Node

 		
 Reset Node

 		
 Object

 		
 Object

 		
 Specs

 		
 Engine

 		
 Backend

 		
 Processor

 		
 Engine State

 		
 Node

 		
 Reset Node

 		
 Object

 		
 Graph

 		
 Graph

 		
 Engine Graph

 		
 Environment

 		
 BaseEnv

 		
 Utilities

 		
 Space

 		
 Process

 		
 Register

 		
 Message

 		
 Code Examples

 		
 Troubleshooting

 		
 Contributing to EAGERx

 		
 Creating a Package

 		
 Template

_images/opendr_logo.png
Deep
oren RODOTICS

_images/quadruped.gif

_images/rqt_graph.png
Irx/reset/initialized

Irx/reset
Irx/safety/outputs/in_collision 0.0 Hz
19.7 Hz
< reset 20058 1649669000518 > /ndresetinitialized
. Irx/real_reset
Irx/reset/outputs/joints Irx/real_reset 0.0 Hz
20.0 Hz 0.0 Hz

K—\V Irx/reset
0.0 Hz
/ isafetyfinitiolized 5 /eagenccore 19648 1649669006113 v o Joridge 19909 1649669008286

0.0 Hz
/safety_20038_1649669009494 Irx/real_reset
< /<~) 0.0 Hz

Irx/safety/initialized

Irx/reset
0.0 Hz

_images/pendulum_real.gif
Applied Voltage
= ﬂ

.

L t=070s J

_images/pendulum_sim.gif
00 s

_images/tu_delft.png
Delft
e t University of
Technology

_static/file.png

_static/plus.png

_static/logo.png

_static/minus.png

_static/gif/all.gif

_static/gif/box_pushing_pybullet.gif

_static/gif/box_pushing_real_old.gif

_static/gif/crazyfly_real.gif

_static/gif/box_pushing_pybullet_old.gif

_static/gif/box_pushing_real.gif

_static/gif/crazyfly_sim.gif

_static/gif/pendulum_real.gif
Applied Voltage
= ﬂ

.

L t=070s J

_images/box_pushing_pybullet.gif

_images/box_pushing_real.gif

_images/banner.png
EAGERXx

_static/gif/quadruped.gif

_static/img/banner.png
EAGERXx

_static/gif/pendulum_sim.gif
00 s

_static/gif/pendulum_sim_old.gif
Aﬁﬁﬁed Vo\taﬁe

I~

theta =—2.52 rad
t=020s

_images/all.gif

_static/img/eagerx_template.png
£ master - § 3branches ©0tags Gotofle | Addfie~ Code~

Jelle Luijkx ci: not publishing code on codeclimate 9520c31 yesterday {D) 13 commits
B githubiworkflows ci: not publishing code on codecimate yesterday
M eagerx_template Create template 7 days ago
M scripts Create template 7 days ago
W tests Create template 7 days ago
O .coveragerc Create template 7 days ago
O giignore Iniial commit 13 days ago
[LICENSE Iniial commit 13 days ago
[Makefile Create template 7 days ago
[READMErst docs: Update READ