
EAGERx Documentation
Release 0.1.40

EAGERx Contributors

Jan 05, 2024

TABLE OF CONTENTS

1 Video 3

2 Engines 5
2.1 Getting Started . 5
2.2 Tutorials . 10
2.3 API Reference . 16
2.4 Code Examples . 59
2.5 Troubleshooting . 60
2.6 Contributing to EAGERx . 61

3 Cite EAGERx 65

4 Maintainers 67

5 How to contact us 69

6 Acknowledgements 71

Index 73

i

ii

EAGERx Documentation, Release 0.1.40

You can use EAGERx (Engine Agnostic Graph Environments for Robotics) to easily define new (Gymnasium compat-
ible) environments with modular robot definitions.

It enables users to:

• Define environments as graphs of nodes

• Visualize these graph environments interactively in a GUI

• Use a single graph environment both in reality and with various simulators

EAGERx explicitly addresses the differences in learning between simulation and reality, with native support for essen-
tial features such as:

• Safety layers and various other state, action and time-scale abstractions

• Delay simulation & domain randomization

• Real-world reset routines

• Synchronized parallel computation within a single environment

You can find the open-source code on Github.

Sim2Real: Policies trained in simulation and zero-shot evaluated on real systems using EAGERx. On the left the
successful transfer of a box-pushing policy is shown, in the middle for the classic pendulum swing-up problem and on
the right a task involving the crazyfly drone.

Modular: The modular design of EAGERx allows users to create complex environments easily through composition.

TABLE OF CONTENTS 1

https://opensource.org/licenses/Apache-2.0
https://eagerx.readthedocs.io/en/master/?badge=master
https://github.com/eager-dev/eagerx/actions/workflows/ci.yml
https://codeclimate.com/github/eager-dev/eagerx/test_coverage
https://github.com/eager-dev/eagerx
https://gymnasium.farama.org/
https://gymnasium.farama.org/
https://github.com/eager-dev/eagerx

EAGERx Documentation, Release 0.1.40

GUI: Users can visualize their graph environment. Here we visualize the graph environment that we built in this
tutorial. See the documentation for more information.

Applications beyond RL: The modular design and unified software pipeline of the framework have utility beyond
reinforcement learning. We explored two such instances: interactive language-conditioned imitation learning (left)
and classical control with deep learning based perception in a swimming pool environment (right).

2 TABLE OF CONTENTS

https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb
https://eagerx.readthedocs.io/en/master/guide/getting_started/index.html#extras-gui

CHAPTER

ONE

VIDEO

3

EAGERx Documentation, Release 0.1.40

4 Chapter 1. Video

CHAPTER

TWO

ENGINES

EAGERx enables a unified pipeline for real-world and simulated learning across various simulators. The following
engines/simulators are already available for training and evaluation:

• RealEngine for real-world experiments

• PybulletEngine for PyBullet simulations

• OdeEngine for simulations based on ordinary differential equations (ODEs)

Users can easily add their own engines by implementing the Engine interface.

2.1 Getting Started

2.1.1 Installing EAGERx

There are four installation options:

• Using pip

• From source

• Using docker

• Using conda and robostack

Installation using pip

You can do a minimal installation of EAGERx with:

pip3 install eagerx

Note: To make use of EAGERx’s distributed capabilities (e.g. running on different physical machines), ROS1 should
be installed and sourced.

5

https://github.com/eager-dev/eagerx_reality
https://github.com/eager-dev/eagerx_pybullet
https://github.com/eager-dev/eagerx_ode

EAGERx Documentation, Release 0.1.40

Installation from source

Prerequisites: Install Poetry.

Clone the eagerx repository and go to its root:

git clone git@github.com:eager-dev/eagerx.git
cd eagerx

Install EAGERx:

poetry install

Verify installation:

poetry run python examples/example_openai.py

Note: To make use of EAGERx’s distributed capabilities (e.g. running on different physical machines), ROS1 should
be installed and sourced.

Installation using Docker (with distributed support)

Prerequisites: Install Docker and for GPU dockers nvidia-docker.

In total, four docker images are available with EAGERx installed, i.e. two with a minimal installation of EAGERx and
its dependencies (CPU and GPU) and two with Stable Baselines 3 installed as well (CPU and GPU). The dockers with
Stable Baselines 3 also come with tutorials on EAGERx.

Note: All docker images natively support EAGERx’s distributed capabilities (e.g. running on different physical
machines).

GPU Dockers

The GPU dockers require nvidia-docker and can be pulled as follows:

sudo docker pull eagerx/eagerx

or with Stable Baselines 3 and the tutorials:

sudo docker pull eagerx/eagerx-sb

The docker image can be run as follows:

sudo docker run -it --rm --gpus all [image]

where [image] should be replaced with eagerx/eagerx or eagerx/eagerx-sb.

Verify that EAGERx is installed:

python -c 'import eagerx'

6 Chapter 2. Engines

https://github.com/eager-dev/eagerx
https://docs.docker.com/engine/install/
https://github.com/NVIDIA/nvidia-docker
https://stable-baselines3.readthedocs.io/en/master/index.html
https://github.com/eager-dev/eagerx_tutorials
https://github.com/NVIDIA/nvidia-docker
https://github.com/eager-dev/eagerx_tutorials

EAGERx Documentation, Release 0.1.40

CPU Dockers

The CPU only dockers can be pulled as follows:

sudo docker pull [image]

where image should be replaced with eagerx/eagerx-cpu or eagerx/eagerx-sb-cpu.

Run the image with the command

sudo docker run -it --rm [image]

where image should be replaced with eagerx/eagerx-cpu or eagerx/eagerx-sb-cpu.

Verify that EAGERx is installed:

python -c 'import eagerx'

Installation Using Conda (with distributed support)

You first need to download and install Conda (we recommend the miniforge distribution).

Then, follow the instructions of RoboStack to install ROS1:

if you don't have mamba yet, install it first (not needed when using mambaforge):
conda install mamba -c conda-forge

now create a new environment
mamba create -n ros_env python=3.8
conda activate ros_env

this adds the conda-forge channel to the new created environment configuration
conda config --env --add channels conda-forge
and the robostack channels
conda config --env --add channels robostack
conda config --env --add channels robostack-experimental

Install the version of ROS you are interested in:
mamba install ros-noetic-desktop

optionally, install some compiler packages if you want to e.g. build packages in a␣
→˓colcon_ws:
mamba install compilers cmake pkg-config make ninja colcon-common-extensions

on Linux and osx (but not Windows) for ROS1 you might want to:
mamba install catkin_tools

on Windows, install Visual Studio 2017 or 2019 with C++ support
see https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=msvc-160

on Windows, install the Visual Studio command prompt:
mamba install vs2019_win-64

note that in this case, you should also install the necessary dependencies with conda/
→˓mamba, if possible (continues on next page)

2.1. Getting Started 7

https://github.com/conda-forge/miniforge
https://robostack.github.io/GettingStarted.html

EAGERx Documentation, Release 0.1.40

(continued from previous page)

IMPORTANT! reload environment to activate required scripts before running anything
on Windows, please restart the Anaconda Prompt / Command Prompt!
conda deactivate
conda activate ros_env

if you want to use rosdep, also do:
mamba install rosdep
rosdep init # IMPORTANT: do not use sudo!
rosdep update

Finally, you can activate your ros_env and install EAGERx:

conda activate ros_env
pip install eagerx

We also provide a Conda environment file which contains ROS1, EAGERx, SB3 and other EAGERx packages. In that
case you simply have to do:

conda env create -f ros_env.yml

2.1.2 Extras: GUI

To install the whole set of features, you will need additional packages. There is for example a package available for
visualizing the Graph and the EngineGraph .

You can install the gui by running:

pip3 install eagerx-gui

Note: The EAGERx docker images currently do not support gui functionality.

Fig. 1: The visualisation of an environment via the GUI.

2.1.3 Extras: training visualization

In robotics it is crucial to monitor the robot’s behavior during the learning process. Luckily, all inter-node communi-
cation within EAGERx can be listened to externally, so that any relevant information stream can be trivially monitored
on-demand (e.g. with rqt_plot). For this, the user must select the Ros1 Backend .

Note: rqt_plot is included in the desktop or desktop-full ROS1 installation. See here for installation instruc-
tions. The docker images do not support visualization using rqt_plot.

Fig. 2: Live plot of the x, y, and z coordinate of the end effector using rqt_plot.

8 Chapter 2. Engines

../../_static/conda/ros_env.yml

EAGERx Documentation, Release 0.1.40

2.1.4 Other Dependencies

Below you find instructions for installing dependencies (optionally) required by EAGERx.

Poetry

Poetry is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project
depends on and it will manage (install/update) them for you. We advise contributors to use this tool when developing
an EAGERx package to leverage the pre-build CI workflow we have setup in the template package. However, this is not
a requirement and a simple pip install to install all eagerx package dependencies into your project’s (virtual) Python
environment will also work.

For installation on osx / linux / bashonwindows, simply run:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py |␣
→˓python -

For more installation instructions, see here.

ROS1

See the ROS1 Installation Options, or do the following. By replacing <DISTRO> with the supported ROS1 distributions
(noetic, melodic), and <PACKAGE> with the installation type (ros-base, desktop, desktop-full), a minimal
ROS1 installation can be installed with:

Warning: Currently, eagerx only supports ROS1. ROS2 support will be added in future versions.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/
→˓apt/sources.list.d/ros-latest.list'
sudo apt install curl # if you haven't already installed curl
curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key␣
→˓add -
sudo apt update
sudo apt install ros-<DISTRO>-<PACKAGE>
sudo apt-get install ros-<DISTRO>-cv-bridge

Make sure to source /opt/ros/<DISTRO>/setup.bash in the environment where you intend to eagerx in. It can
be convenient to automatically source this script every time a new shell is launched. These commands will do that for
you if you:

echo "source /opt/ros/<DISTRO>/setup.bash" >> ~/.bashrc
source ~/.bashrc

In case you make use of a virtual environment, move to the directory containing the .venv and add source /opt/
ros/<DISTRO>/setup.bash to the activation script before activating the environment with this line:

echo "source /opt/ros/<DISTRO>/setup.bash" >> .venv/bin/activate

2.1. Getting Started 9

https://python-poetry.org/docs/#installation
http://wiki.ros.org/ROS/Installation

EAGERx Documentation, Release 0.1.40

2.2 Tutorials

A set of tutorials is created to showcase some of the key features of EAGERx and to guide users through the process of
using EAGERx for robot learning tasks. Most of them are available in the form of Google Colabs in the eagerx_tutorials
package. We will briefly introduce these tutorials in the following sections. Furthermore, a tutorial on how to visualize
training using EAGERx is available.

2.2.1 Colabs

Introduction to EAGERx

The best way to get introduced to EAGERx is to play around with the tutorials that are available. They also contain
exercises that address common challenges of robotic reinforcement learning and how to overcome them using EAGERx.

The following introductory tutorials are available:

• Tutorial 1: Getting started

• Tutorial 2: Advanced usage

The solutions are available in here.

Fig. 3: In the advanced usage tutorial you will learn a quadruped to walk in circles within four minutes of training.

1. Getting Started

This tutorial covers:

• constructing a Graph and an environment using BaseEnv,

• switching between different Engine,

• performing domain randomization.

2. Advanced Usage

In this notebook, you will learn to use EAGERx to create a gym-compatible environment. This tutorial covers:

• how to initialize a robot (Go 1 Quadruped Robot).

• how to add pre-processing nodes (i.e. low-level controllers).

• how to fine-tune low-level controllers to achieve the desired behavior.

• how to (de)select various sensors to investigate its effect on the learning performance.

10 Chapter 2. Engines

https://github.com/eager-dev/eagerx_tutorials
https://github.com/eager-dev/eagerx_tutorials
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/getting_started.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb
https://github.com/eager-dev/eagerx_tutorials/tree/master/tutorials/icra/solutions/
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/getting_started.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/icra/advanced_usage.ipynb

EAGERx Documentation, Release 0.1.40

Developer Tutorials

Next to the introduction tutorials, a set of developer tutorials is also available:

• Tutorial 1: Environment Creation and Training with EAGERx

• Tutorial 2: Reset and Step

• Tutorial 3: Space and Processors

• Tutorial 4: Nodes and Graph Validity

• Tutorial 5: Adding Engine Support for an Object

• Tutorial 6: Defining a new Object

• Tutorial 7: More Informative Rendering

• Tutorial 8: Reset Routines

The solutions are available in here.

Fig. 4: The tutorials cover common challenges of robotic reinforcement learning and how to overcome them using
EAGERx. The classic control problem of swinging up an underactuated pendulum is used as an example.

1. Environment Creation and Training

This tutorial covers:

• Creating a Graph with an Object.

• How to use this Graph and a Engine to create an BaseEnv.

• How to train a policy with the BaseEnv.

2. Reset and Step

This tutorial covers:

• Extracting observations in the step

• Resetting states using reset()

• The window argument of the connect() method

• Simulating delays using the delay argument of the connect() method

2.2. Tutorials 11

https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/2_reset_and_step.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/3_space_and_processors.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/4_nodes.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/5_engine_implementation.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_objects.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/7_rendering.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/8_reset_routine.ipynb
https://github.com/eager-dev/eagerx_tutorials/tree/master/tutorials/pendulum/solutions/
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/2_reset_and_step.ipynb

EAGERx Documentation, Release 0.1.40

3. Space and Processors

This tutorial covers:

• How to specify a Space

• Creating a custom Processor

• How to add a Processor

4. Nodes and Graph Validity

This tutorial covers:

• Creating a Node

• Adding a Node to the Graph

• Checking the validity of the Graph

• How to make the Graph valid (DAG)

5. Adding Engine Support for an Object

This tutorial covers:

• Adding an engine-specific implementation to an Object

• Initializing the corresponding Engine

• Train with the newly added engine-specific implementation

6. Defining a new Object

This tutorial covers:

• Defining a new Object

7. More Informative Rendering

• Create a layover Node that augments a raw image sensors

• Connect the layover Node and use it for rendering

• Demonstrate that rendering is agnostic to the selected physics-engine

12 Chapter 2. Engines

https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/3_space_and_processors.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/4_nodes.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/5_engine_implementation.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_objects.ipynb
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/6_rendering.ipynb

EAGERx Documentation, Release 0.1.40

8. Reset Routines

• Defining the reset routine with a ResetNode

• Reset the Object’s with the reset routine.

2.2.2 Visualizing your environment

In this tutorial we will demonstrate how you can use EAGERx to visualize parts of your environment.

EAGERx has a built-in GUI to visualize your environment. Moreover, as EAGERx is build on top of ROS you can use
many of the support ROS tools. These tools can give valuable insights on the workings of your environment.

Note: The ROS tools we cover in this tutorial (e.g. rqt_plot) are per default included in the desktop and
desktop-full ROS installation.

The tools can be manually installed with the lines below. Replace <DISTRO> with the supported ROS distributions
(noetic, melodic).

sudo apt-get install ros-<DISTRO>-rqt
sudo apt-get install ros-<DISTRO>-rqt-common-plugins

Graphical user interface

After creating the Graph for our environment, we can inspect it using the GUI. Note that we need to install it first if
you haven’t done so yet:

pip install eagerx-gui

Next, we can open it by calling gui():

graph.gui()

By clicking on Show Graph, we can inspect the graph in the GUI. The output you will see should look something like
this:

The GUI also provides functionalities for constructing a Graph . So we could also have created the exact same Graph
from scratch using the GUI.

This is demonstrated in the video below:

Live-plotting

Note: Live-plotting is currently only supported when the Ros1 Backend is selected.

In robotics it is crucial to monitor the robot’s behavior during the learning process. Luckily, inter-node communication
within EAGERx can always be listened to externally, so that any relevant information stream can be trivially monitored
on-demand.

2.2. Tutorials 13

https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/7_reset_routine.ipynb
https://github.com/eager-dev/eagerx_gui

EAGERx Documentation, Release 0.1.40

Fig. 5: Screenshot of the EAGERx GUI.

Fig. 6: The construction of an environment via the GUI.

14 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

Inter-node communication within EAGERx is always advertised as a topic that can be listened to externally, even
when nodes are interconnected within the same process. Therefore, we can leverage existing tools from ROS such as
rqt_plot. rqt_plot provides a GUI plugin visualizing numeric values in a 2D plot using different plotting backends.
See here for more details on this tool.

Topic addresses for outputs follow the naming convention:

• <env_name>/<node_name>/outputs/<cname>: (e.g. /rx/controller/outputs/reference).

rqt_plot /rx/viper/sensors/ee_pos/data[0]:data[1]:data[2]

This will open a live-plot of the x, y, and z coordinate of the end effector similar to the one below.

Fig. 7: Live plot of the x, y, and z coordinate of the end effector using rqt_plot.

Note: The computational overhead of publishing all node outputs as topics is minimal when there are no subscribers.
In other words, there is only computational overhead when external source (e.g. rqt_plot) is listening to the advertised
topics. Once the external source unsubscribes, the overhead is again reduced.

Computation graph

rqt_graph is a ROS tool that provides a GUI plugin for visualizing what’s going in the ROS computation graph that
EAGERx creates for you based on the nodes, objects, and their interconnections.

To visualize the graph, you can run the following command in a separate terminal while your environment is running:

rosparam set enable_statistics true
rqt_graph

This will provide you with an overview similar to the one below:

Fig. 8: The ROS computation graph that EAGERx creates for you.

In the top left, you can refresh to update statistics about the messages that are passed in the graph. Also you can select
what to visualize:

• Nodes only: This will only show the communication (i.e. topics) between nodes that were launched as a
NEW_PROCESS.

• Nodes/Topics (active): This will show all communication (i.e. topics) that are currently active.

• Nodes/Topics (all): This will show all communication (i.e. topics).

2.2. Tutorials 15

http://wiki.ros.org/rqt_plot

EAGERx Documentation, Release 0.1.40

2.2.3 Distributed

To launch a node or engine externally on, for example, a different physical machine, you must set its process to
EXTERNAL. See process for more info. In this case, you as a user are responsible for launching the node/engine.

Note: When using the Ros1 Backend for running across multiple machines, please make sure that the
ROS_MASTER_URI is correctly configured on every machine. See here for more info.

You will have to pass the following arguments

• Path to the appropriate executable python script (executable_node.py for nodes, executable_engine.py
for engines).

• --backend: Backend that was selected for the environment (e.g. eagerx.backends.ros1/Ros1 or eagerx.
backends.single_process/SingleProcess).

• --loglevel: The desired log level (as an integer). See constants for more info.

• --env: The environment name.

• --name: The name of the node/engine. For engines, the name is always engine. If the node is part of an
engine-specific implementation of an object, the node name is <object_name>/<node_name>.

For nodes, an example would look like:

python3 <path>/<to>/<package>/eagerx/core/executable_node.py --backend eagerx.backends.
→˓ros1/Ros1 --loglevel 20 --env CamEnv --name obj/camera_api

For an engine, an example would look like:

python3 <path>/<to>/<package>/eagerx/core/executable_engine.py --backend eagerx.backends.
→˓ros1/Ros1 --loglevel 20 --env CamEnv --name engine

2.3 API Reference

2.3.1 Engine

class eagerx.core.entities.Engine(sync, real_time_factor, params, target_addresses, node_names, *args,
**kwargs)

Baseclass for engines.

Use this baseclass to implement an engine that interfaces the simulator.

Users must call make() to make the engine subclass’ specification.

Subclasses must implement the following methods:

• make()

• initialize()

• add_object()

• pre_reset()

• reset()

• callback()

16 Chapter 2. Engines

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

EAGERx Documentation, Release 0.1.40

• shutdown() (optional)

abstract add_object(name, *args, **kwargs)
Adds an object to the simulator that is interfaced by the engine.

Parameters

• name (str) – The name of the Object that is to be added.

• args (Union[bool, int, float, str, List, Dict]) – The engine-specific parameters that
are required to add the Object.

• kwargs (Union[bool, int, float, str, List, Dict]) – The engine-specific parameters
that are optional to add the Object.

Return type None

abstract callback(t_n)
The engine callback that is performed at the specified rate.

This callback is steps the simulator by 1/rate.

Note: The engine does not have any outputs. If you wish to broadcast other output messages based on
properties of the simulator, a separate EngineNode should be created.

Parameters t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

Return type None

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec)
An abstract method that initializes the node at run-time.

Parameters spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the
node/engine.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

2.3. API Reference 17

EAGERx Documentation, Release 0.1.40

abstract pre_reset(**states)
An abstract method that resets the engine to its initial state before the start of an episode.

Note: This method is called before every EngineNode and EngineState has performed its reset, but
after all reset routines, implemented with ResetNode, have reached their target.

• Can be useful for performing some preliminary actions on the simulator such as pausing before reset-
ting every EngineNode and EngineState.

• Reset the simulator state so that this state can be used in the reset of every EngineNode and
EngineState.

Parameters states (Any) – States that were registered (& selected) with the eagerx.core.
register.states() decorator by the subclass. The state messages are sent by the environ-
ment and can be used to reset the engine at the start of an episode. This can be anything, such
as the dynamical properties of the simulator (e.g. friction coefficients).

Return type None

abstract reset(**states)
An abstract method that resets the engine to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Note: This method is called after every EngineNode and EngineState has finished its reset.

• Can be useful for performing some final actions on the simulator such as unpausing after every
EngineNode and EngineState have reset.

Parameters states (Any) – States that were registered (& selected) with the eagerx.core.
register.states() decorator by the subclass. The state messages are sent by the environ-
ment and can be used to reset the engine at the start of an episode. This can be anything, such
as the dynamical properties of the simulator (e.g. friction coefficients).

Return type None

shutdown()

A method that can be overwritten to cleanly shutdown (e.g. release resources).

Return type None

backend: eagerx.core.entities.Backend

Responsible for all I/O communication within this process. Nodes inside the same process share the same
message broker. Cannot be modified.

entity_id: str

A unique entity_id with the structure <module>/<classname>.

log_level: int

Specifies the log level for this node: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50:
FATAL}. Can be set in the subclass’ spec().

18 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

log_memory: int

Specifies the log level for logging memory usage over time for this node: {0: SILENT, 10: DEBUG, 20:
INFO, 30: WARN, 40: ERROR, 50: FATAL}. Note that log_level has precedent over the memory level
set here. Can be set in the subclass’ spec().

name: str

User specified node name. Can be set in spec().

ns: str

Namespace of the environment. Can be set with the name argument to BaseEnv.

objects: dict

Parameters for all objects.

process: int

Process in which this node is launched. See process for all options. Can be set in the subclass’ spec().

rate: float

Rate (Hz) at which the callback is called. Can be set in the subclass’ spec().

real_time_factor: float

A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate. If real_time_factor
< 1 the simulation is slower than real time. Can be set in the engine’s spec().

simulate_delays: bool

Flag that specifies whether input delays are simulated. You probably want to set this to False when running
in the real-world. Can be set in the engine’s spec().

simulator: Any

The simulator object. The simulator depends on the engine and should be initialized in the initialize()
method. Oftentimes, engine nodes require a reference in callback() and/or reset() to this simulator
object to simulate (e.g. apply an action, extract a sensor measurement). Engine nodes only have this
reference if the node was launched inside the engine process. See process for more info.

states: dict

Parameters for all selected states.

sync: bool

Flag that specifies whether we run reactive or asynchronous. Can be set in the engine’s spec().

2.3.2 Backend

class eagerx.core.entities.Backend(ns, backend_type, entity_id, log_level, main=False, sync=None,
real_time_factor=None, simulate_delays=None, **kwargs)

Baseclass for backends.

Use this baseclass to implement backends that implement the communication.

Users must use make() to make the registered subclass’ specification.

Subclasses must implement the following methods:

• make()

• initialize()

• Publisher()

• Subscriber()

2.3. API Reference 19

EAGERx Documentation, Release 0.1.40

• register_environment()

• delete_param()

• upload_params()

• get_param()

• spin()

Subclasses must set the following static class properties:

• BACKEND

• DISTRIBUTED_SUPPORT

• MULTIPROCESSING_SUPPORT

• COLAB_SUPPORT

abstract Publisher(address, dtype)
Creates a publisher.

Parameters

• address (str) – Topic name.

• dtype (str) – Dtype of message in string format (e.g. float32).

Return type Publisher

abstract Subscriber(address, dtype, callback, header=False, callback_args=())
Creates a subscriber.

Parameters

• address (str) – Topic name.

• dtype (str) – Dtype of message in string format (e.g. float32).

• callback – Function to call (fn(data)) when data is received. If callback_args is set,
the function must accept the callback_args as positional args, i.e. fn(data, header, *call-
back_args).

• header (bool) – Set to True if the callback accepts the header as the second positional
argument.

• callback_args (Optional[Tuple]) – Additional arguments to pass to the callback.

Return type Subscriber

abstract delete_param(param, level=1)
Deletes params from the parameter server.

Parameters

• param (str) – Parameter name.

• level (int) – Determines what to do when the param does not exist:

– 0=error: Raises a BackendException.

– 1=warn: logs a warning and returns None.

– 2=pass: passes silently and returns None.

Return type None

20 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

static deserialize_time(secs, nsecs)
Convert a secs and nsecs time instance into float time in seconds .

Should be used when manually setting secs/nsecs slot values for deserialization.

Return type float

abstract get_param(name, default=<eagerx.core.constants.Unspecified object>)
Retrieve a parameter from the param server

Parameters

• name (str) – Parameter name.

• default (Any) – Default value to return.

Return type Union[Dict, List, bool, float, int, str]

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec)
An abstract method to initialize the backend.

Parameters spec (BackendSpec) – Specification of the node/engine.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

now()

Get the current times according to the simulated and wall clock

Return type Tuple[float, float]

abstract register_environment(name, force_start, fn)
Checks if environment already exists and shuts it down if force_restart is set. Then, it registers the remote
shutdown procedure for the newly created environment.

Parameters

• name (str) – Environment name (i.e. namespace of the environment).

• force_start (bool) – Whether to shutdown any environment with the same name if it
already exists.

• fn (Callable) – Function with zero args to be called on remote shutdown.

Return type ShutdownService

2.3. API Reference 21

EAGERx Documentation, Release 0.1.40

static serialize_time(t)
Convert a float time instance (in seconds) into secs and nsecs.

Should be used when manually setting secs/nsecs slot values for serialization.

Return type Tuple[int, int]

shutdown()

Shuts down the backend

Return type None

abstract spin()

Blocks until node is shutdown. Yields activity to other threads.

Return type None

abstract upload_params(ns, values, verbose=False)
Upload params to the parameter server.

Parameters

• ns (str) – Namespace to load parameters into, str.

• values (Dict[str, Union[Dict, List, bool, float, int, str]]) – Key/value dictionary,
where keys are parameter names and values are parameter values, dict.

• verbose (bool) – Verbosity level.

Return type None

abstract property BACKEND: str

Backend name in string format.

Return type str

abstract property COLAB_SUPPORT: bool

Whether the backend supports running on Google colab.

Return type bool

abstract property DISTRIBUTED_SUPPORT: bool

Whether nodes can be launched on external platforms (i.e. distributed communication).

Return type bool

abstract property MULTIPROCESSING_SUPPORT: bool

Whether nodes can be launched as separate processes.

Return type bool

backend_type: str

The class definition of the subclass. Follows naming convention <module>/<BackendClassName>. Can-
not be modified.

entity_id: str

A unique entity_id with the structure <module>/<classname>.

log_level: int

Specifies the effective log level: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50:
FATAL}. Can be set in the subclass’ spec().

22 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

main: bool

If True, the backend is the ‘main` backend that corresponds to the environment process.

ns: str

Namespace of the environment. Can be set with the name argument to BaseEnv.

real_time_factor: float

A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate. If real_time_factor
< 1 the simulation is slower than real time.

simulate_delays: bool

Flag that specifies whether input delays are simulated. You probably want to set this to False when running
in the real-world.

sync: bool

Flag that specifies whether we run synchronous or asynchronous.

2.3.3 Processor

class eagerx.core.entities.Processor

Baseclass for processors.

Use this baseclass to implement processor that preprocess an input/output message.

This baseclass only supports one-way processing.

Users must call make() to make the subclass’ specification.

Subclasses must implement the following methods:

• make()

• initialize()

• convert()

abstract convert(msg)
An abstract method to preprocess messages.

Parameters msg (Any) – Raw message.

Return type Any

Returns Preprocessed message.

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec)
An abstract method to initialize the processor.

Parameters spec (ProcessorSpec) – Specification of the processor.

Return type None

2.3. API Reference 23

EAGERx Documentation, Release 0.1.40

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

2.3.4 Engine State

class eagerx.core.entities.EngineState(ns, name, simulator, backend, params)
Baseclass for engine states.

Use this baseclass to implement engine states for an Object.

Users must call make() to make the subclass’ specification.

Subclasses must implement the following methods:

• make()

• initialize()

• reset()

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec, simulator)
An abstract method to initialize the engine state.

Parameters

• spec (EngineStateSpec) – The engine state specification.

• simulator (Any) – A reference to the engine’s simulator.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

24 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

abstract reset(state)
An abstract method to reset the engine state of an Object.

Parameters state (Any) – The desired state that the user can specify before calling reset().

Return type None

backend

Responsible for all I/O communication within this process.

name

Name of the state.

ns

Namespace of the environment. Can be set with the name argument to BaseEnv.

2.3.5 Nodes

Node

class eagerx.core.entities.Node(ns, message_broker, sync, real_time_factor, simulate_delays, params,
call_init=True)

Baseclass for nodes.

Use this baseclass to implement nodes that will be added to the (agnostic) Graph .

Users must call make() to make the node subclass’ specification.

Subclasses must implement the following methods:

• make()

• initialize()

• reset()

• callback()

• shutdown() (optional)

Use baseclass EngineNode instead, for nodes that will be added to EngineGraph when specifying an engine
implementation for an Object.

Use baseclass ResetNode instead, for reset routines.

abstract callback(t_n, **inputs)
An abstract method that is called at the specified node rate.

This method should be decorated with:

• eagerx.core.register.inputs() to register the inputs.

• eagerx.core.register.outputs() to register the outputs.

Parameters

• t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

• inputs (Msg) – Inputs that were registered (& selected) with the eagerx.core.
register.inputs() decorator by the subclass.

Return type Dict[str, Any]

2.3. API Reference 25

EAGERx Documentation, Release 0.1.40

Returns Dictionary with outputs that were registered (& selected) with the eagerx.core.
register.outputs() decorator by the subclass.

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec)
An abstract method that initializes the node at run-time.

Parameters spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the
node/engine.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

abstract reset(**states)
An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Parameters states (Any) – States that were registered (& selected) with the eagerx.core.
register.states() decorator by the subclass. The state messages are sent by the environ-
ment and can be used to reset the node at the start of an episode. This can be anything from
an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

Return type None

set_delay(delay, component, cname)
A method to vary the delay of an input or feedthrough.

Parameters

• delay (float) – A non-negative delay that can be varied at the beginning of an episode
(during the reset procedure).

• component (str) – Either “inputs” or “feedthroughs”.

• cname (str) – name of the component.

Return type None

shutdown()

A method that can be overwritten to cleanly shutdown (e.g. release resources).

Return type None

26 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

backend: eagerx.core.entities.Backend

Responsible for all I/O communication within this process. Nodes inside the same process share the same
message broker. Cannot be modified.

color: str

Specifies the color of logged messages & node color in the GUI. Check-out the termcolor documentation
for the supported colors. Can be set in the subclass’ spec().

entity_id: str

A unique entity_id with the structure <module>/<classname>.

inputs: dict

Parameters for all selected inputs.

log_level: int

Specifies the log level for this node: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50:
FATAL}. Can be set in the subclass’ spec().

log_memory: int

Specifies the log level for logging memory usage over time for this node: {0: SILENT, 10: DEBUG, 20:
INFO, 30: WARN, 40: ERROR, 50: FATAL}. Note that log_level has precedent over the memory level
set here. Can be set in the subclass’ spec().

name: str

User specified node name. Can be set in spec().

ns: str

Namespace of the environment. Can be set with the name argument to BaseEnv.

outputs: dict

Parameters for all selected outputs.

process: int

Process in which this node is launched. See process for all options. Can be set in the subclass’ spec().

rate: float

Rate (Hz) at which the callback is called. Can be set in the subclass’ spec().

real_time_factor: float

A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate. If real_time_factor
< 1 the simulation is slower than real time. Can be set in the engine’s spec().

simulate_delays: bool

Flag that specifies whether input delays are simulated. You probably want to set this to False when running
in the real-world. Can be set in the engine’s spec().

states: dict

Parameters for all selected states.

sync: bool

Flag that specifies whether we run reactive or asynchronous. Can be set in the engine’s spec().

2.3. API Reference 27

EAGERx Documentation, Release 0.1.40

Engine Node

class eagerx.core.entities.EngineNode(params, *args, simulator=None, message_broker=None,
**kwargs)

Baseclass for nodes that are only to be used in combination with a specific engine.

Users must call make() to make the engine node subclass’ specification.

Use this baseclass to implement nodes that will be added to an EngineGraph when specifying an engine imple-
mentation for an Object.

These nodes can, optionally, be synchronized with respect to the simulator clock by registering “tick” as an input.

Note: Engine nodes only receive a reference to the simulator as an argument to initialize() when the
engine nodes are launched within the same process as the engine. See process for more info.

Subclasses must implement the following methods:

• make()

• initialize()

• reset()

• callback()

• shutdown() (optional)

Use baseclass Node instead, for nodes that will be added to the (agnostic) Graph .

Use baseclass ResetNode instead, for reset routines.

abstract callback(t_n, **inputs)
An abstract method that is called at the specified node rate.

This method should be decorated with:

• eagerx.core.register.inputs() to register the inputs.

• eagerx.core.register.outputs() to register the outputs.

Parameters

• t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

• inputs (Msg) – Inputs that were registered (& selected) with the eagerx.core.
register.inputs() decorator by the subclass.

Return type Dict[str, Any]

Returns Dictionary with outputs that were registered (& selected) with the eagerx.core.
register.outputs() decorator by the subclass.

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

28 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

abstract initialize(spec, simulator)
An abstract method that initializes the node at run-time.

Parameters

• spec (NodeSpec) – Specification of the engine node.

• simulator (Any) – A reference to the simulator. The simulator type depends on the
engine. Only available if the node was launched inside the engine process.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

abstract reset(**states)
An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Warning: Avoid defining states for engine nodes, as you risk making your Object non-agnostic to
the environment. Instead, try to implement object states as an EngineState of an Object.

Parameters states (Any) – States that were registered (& selected) with the eagerx.core.
register.states() decorator by the subclass. The state messages are sent by the environ-
ment and can be used to reset the node at the start of an episode. This can be anything from
an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

Return type None

set_delay(delay, component, cname)
A method to vary the delay of an input or feedthrough.

Parameters

• delay (float) – A non-negative delay that can be varied at the beginning of an episode
(during the reset procedure).

• component (str) – Either “inputs” or “feedthroughs”.

• cname (str) – name of the component.

Return type None

shutdown()

A method that can be overwritten to cleanly shutdown (e.g. release resources).

Return type None

backend: eagerx.core.entities.Backend

Responsible for all I/O communication within this process. Nodes inside the same process share the same
message broker. Cannot be modified.

2.3. API Reference 29

EAGERx Documentation, Release 0.1.40

color: str

Specifies the color of logged messages & node color in the GUI. Check-out the termcolor documentation
for the supported colors. Can be set in the subclass’ spec().

entity_id: str

A unique entity_id with the structure <module>/<classname>.

inputs: dict

Parameters for all selected inputs.

log_level: int

Specifies the log level for this node: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40: ERROR, 50:
FATAL}. Can be set in the subclass’ spec().

log_memory: int

Specifies the log level for logging memory usage over time for this node: {0: SILENT, 10: DEBUG, 20:
INFO, 30: WARN, 40: ERROR, 50: FATAL}. Note that log_level has precedent over the memory level
set here. Can be set in the subclass’ spec().

name: str

User specified node name. Can be set in spec().

ns: str

Namespace of the environment. Can be set with the name argument to BaseEnv.

outputs: dict

Parameters for all selected outputs.

process: int

Process in which this node is launched. See process for all options. Can be set in the subclass’ spec().

rate: float

Rate (Hz) at which the callback is called. Can be set in the subclass’ spec().

real_time_factor: float

A specified upper bound on the real_time factor. Wall-clock rate=real_time_factor*rate. If real_time_factor
< 1 the simulation is slower than real time. Can be set in the engine’s spec().

simulate_delays: bool

Flag that specifies whether input delays are simulated. You probably want to set this to False when running
in the real-world. Can be set in the engine’s spec().

states: dict

Parameters for all selected states.

sync: bool

Flag that specifies whether we run reactive or asynchronous. Can be set in the engine’s spec().

30 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

Reset Node

class eagerx.core.entities.ResetNode(params, *args, **kwargs)
Baseclass for nodes that perform a reset routine.

Use this baseclass to implement reset nodes that will be added to the (agnostic) Graph .

Users must call make() to make the reset node subclass’ specification.

Note: Subclasses must always have at least one target registered with the eagerx.core.register.targets()
decorator.

Subclasses must implement the following methods:

• make()

• initialize()

• reset()

• callback()

• shutdown() (optional)

Use baseclass EngineNode instead, for nodes that will be added to EngineGraph when specifying an engine
implementation for an Object.

Use baseclass Node instead, for regular nodes that will be added to the agnostic Graph .

abstract callback(t_n, **inputs_and_targets)
An abstract method that is called at the specified node rate during the environment reset.

This method should be decorated with:

• eagerx.core.register.inputs() to register the inputs.

• eagerx.core.register.outputs() to register the outputs.

• eagerx.core.register.targets() to register the targets.

Note: This callback is skipped until the user calls reset(). Until then, the messages coming in via
the connected feedthroughs are fed through as the outputs instead. For every registered output that was
registered (& selected) with the eagerx.core.register.outputs() decorator by the subclass, there
must be a connected feedthrough.

Parameters

• t_n (float) – Time passed (seconds) since last reset. Increments with 1/rate.

• inputs_and_targets (Msg) – Inputs and targets that were registered (& selected) with the
eagerx.core.register.inputs() and eagerx.core.register.targets() deco-
rators by the subclass.

Return type Dict[str, Any]

Returns Dictionary with outputs that were registered (& selected) with the eagerx.core.
register.outputs() decorator by the subclass. In addition, the dictionary must contain
message of type bool that specifies whether the requested target was reached.

2.3. API Reference 31

EAGERx Documentation, Release 0.1.40

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract initialize(spec)
An abstract method that initializes the node at run-time.

Parameters spec (Union[NodeSpec, EngineSpec, ResetNodeSpec]) – Specification of the
node/engine.

Return type None

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this entity.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, engine, . . .).

abstract reset(**states)
An abstract method that resets the node to its initial state before the start of an episode.

This method should be decorated with eagerx.core.register.states() to register the states.

Parameters states (Any) – States that were registered (& selected) with the eagerx.core.
register.states() decorator by the subclass. The state messages are sent by the environ-
ment and can be used to reset the node at the start of an episode. This can be anything from
an estimator’s initial state to a hyper-parameter (e.g. delay, control gains).

Return type None

set_delay(delay, component, cname)
A method to vary the delay of an input or feedthrough.

Parameters

• delay (float) – A non-negative delay that can be varied at the beginning of an episode
(during the reset procedure).

• component (str) – Either “inputs” or “feedthroughs”.

• cname (str) – name of the component.

Return type None

shutdown()

A method that can be overwritten to cleanly shutdown (e.g. release resources).

Return type None

32 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

2.3.6 Object

class eagerx.core.entities.Object

Baseclass for objects.

Use this baseclass to implement objets that consist of sensors, actuators, and/or engine states.

Users must call make() to make the object subclass’ specification.

Subclasses must implement the following methods:

• make()

For every supported Engine, an implementation method must be added. This method must have the same
signature as example_engine():

• pybullet() (example)

• ode_engine() (example)

• . . .

example_engine(spec, graph)
An example of an engine-specific implementation of an object’s registered sensors, actuators, and/or states.

See engine how engine specific parameters can be set/get.

This method must be decorated with eagerx.core.register.engine() to register the engine imple-
mentation of the object.

Note: This is an example method for documentation purposes only.

Parameters

• spec (ObjectSpec) – A (mutable) specification.

• graph (EngineGraph) – A graph containing the object’s registered (disconnected) sensors
& actuators. Users should add nodes that inherit from EngineNode, and connect them to
the sensors & actuators. As such, the engine nodes become the engine-specific implemen-
tation of the agnostic sensors & actuator definition.

Return type None

classmethod info(method=None)
A helper method to get info on a method of the specified subclass.

Parameters method (Union[List[str], str, None]) – The registered method we would like to
receive info on. If no method is specified, it provides info on the class itself.

Return type str

Returns Info on the subclass’ method.

abstract classmethod make(*args, **kwargs)
An abstract method that makes the specification (also referred to as spec) of this object.

See ObjectSpec how sensor/actuator/engine state parameters can be set.

This method should be decorated with:

• eagerx.core.register.sensors() to register sensors.

2.3. API Reference 33

EAGERx Documentation, Release 0.1.40

• eagerx.core.register.actuators() to register actuators.

• eagerx.core.register.engine_states() to register engine states.

Parameters

• args (Any) – Arguments to the subclass’ make function.

• kwargs (Any) – Optional Arguments to the subclass’ make function.

Returns A (mutable) spec that can be used to build and subsequently initialize the entity (e.g.
node, object, . . .).

2.3.7 Specs

Engine

class eagerx.core.specs.EngineSpec(params)
A parameter specification that specifies how BaseEnv should initialize the engine.

add_object(name, **kwargs)
Adds an object to the simulator that is interfaced by the engine.

Parameters kwargs (Union[bool, int, float, str, List, Dict]) – Other arguments of
add_object().

Return type None

property config: eagerx.core.view.SpecView

Provides an API to set/get the parameters to initialize.

The default parameters are:

• Spec.config.rate: float
Rate (Hz) at which the callback() is called.

• Spec.config.process: int = 0
Process in which the engine is launched. See process for all options.

• Spec.config.sync: bool = True
Flag that specifies whether we run reactive or asynchronous.

• Spec.config.real_time_factor: float = 0
A specified upper bound on the real-time factor. Wall-clock-rate`=`real_time_factor`*`rate. If
real_time_factor < 1 the simulation is slower than real time.

• Spec.config.simulate_delays: bool = True
Flag that specifies whether input delays are simulated. You probably want to set this to False when
running in the real-world.

• Spec.config.color: str = grey
Specifies the color of logged messages. Check-out the termcolor documentation for the supported
colors.

• Spec.config.print_mode: int = 1
Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

34 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

• Spec.config.log_level: int = 30
Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40:
ERROR, 50: FATAL}.

Return type SpecView

Returns API to get/set parameters.

property inputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

• Spec.inputs.<name>.window: int = 1
A non-negative number that specifies the number of messages to pass to the node’s callback().
– window = 1: Only the last received input message.
– window = x > 1: The trailing last x received input messages.
– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• Spec.inputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the received input message before passing it to the node’s
callback().

• Spec.inputs.<name>.space: dict = None
This space defines the format of valid messages.

• Spec.inputs.<name>.delay: float = 0.0
A non-negative simulated delay (seconds). This delay is ignored if simulate_delays = True in
the engine’s spec().

• Spec.inputs.<name>.skip: bool = False
Skip the dependency on this input during the first call to the node’s callback(). May be neces-
sary to ensure that the connected graph is directed and acyclic.

Return type SpecView

Returns API to get/set parameters.

property objects: eagerx.core.view.SpecView

Provides an API to set/get the parameters to add an object to the engine.

To add a new object, please use add_object().

Arguments correspond to the signature of add_object().

Return type SpecView

Returns API to get/set parameters.

property outputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

• Spec.outputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the output message, returned by callback(), before publishing it.

2.3. API Reference 35

EAGERx Documentation, Release 0.1.40

• Spec.outputs.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

property states: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

• Spec.states.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

Backend

class eagerx.core.specs.BackendSpec(params)
A parameter specification that specifies how BaseEnv should initialize the selected backend.

property config: eagerx.core.view.SpecView

Provides an API to get/set the parameters to initialize.

Return type SpecView

Returns (mutable) API to get/set parameters.

Processor

class eagerx.core.specs.ProcessorSpec(params)
A parameter specification that specifies how BaseEnv should initialize the processor.

property config: eagerx.core.view.SpecView

Provides an API to get/set the parameters to initialize.

Return type SpecView

Returns (mutable) API to get/set parameters.

Engine State

class eagerx.core.specs.EngineStateSpec(params)
A parameter specification that specifies how BaseEnv should initialize the engine state.

property config: eagerx.core.view.SpecView

Provides an API to get/set the parameters to initialize.

Return type SpecView

Returns API to get/set parameters.

36 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

Node

class eagerx.core.specs.NodeSpec(params)
A parameter specification that specifies how BaseEnv should initialize the node.

property config: eagerx.core.view.SpecView

Provides an API to set/get the parameters to initialize.

The default parameters are:

• Spec.config.name: str
User specified unique node name.

• Spec.config.rate: float
Rate (Hz) at which the callback() is called.

• Spec.config.process: int = 0
Process in which the node is launched. See process for all options.

• Spec.config.color: str = grey
Specifies the color of logged messages & node color in the GUI. Check-out the termcolor docu-
mentation for the supported colors.

• Spec.config.print_mode: int = 1
Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

• Spec.config.log_level: int = 30
Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40:
ERROR, 50: FATAL}

Return type SpecView

Returns API to get/set parameters.

property inputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

• Spec.inputs.<name>.window: int = 1
A non-negative number that specifies the number of messages to pass to the node’s callback().
– window = 1: Only the last received input message.
– window = x > 1: The trailing last x received input messages.
– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• Spec.inputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the received input message before passing it to the node’s
callback().

• Spec.inputs.<name>.space: dict = None
This space defines the format of valid messages.

• Spec.inputs.<name>.delay: float = 0.0
A non-negative simulated delay (seconds). This delay is ignored if simulate_delays = True in
the engine’s spec().

2.3. API Reference 37

EAGERx Documentation, Release 0.1.40

• Spec.inputs.<name>.skip: bool = False
Skip the dependency on this input during the first call to the node’s callback(). May be neces-
sary to ensure that the connected graph is directed and acyclic.

Return type SpecView

Returns API to get/set parameters.

property outputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

• Spec.outputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the output message, returned by callback(), before publishing it.

• Spec.outputs.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

property states: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

• Spec.states.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

Reset Node

class eagerx.core.specs.ResetNodeSpec(params)
A parameter specification that specifies how BaseEnv should initialize the node.

property config: eagerx.core.view.SpecView

Provides an API to set/get the parameters to initialize.

The default parameters are:

• Spec.config.name: str
User specified unique node name.

• Spec.config.rate: float
Rate (Hz) at which the callback() is called.

• Spec.config.process: int = 0
Process in which the node is launched. See process for all options.

• Spec.config.color: str = grey
Specifies the color of logged messages & node color in the GUI. Check-out the termcolor docu-
mentation for the supported colors.

38 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

• Spec.config.print_mode: int = 1
Specifies the different modes for printing: {1: TERMCOLOR, 2: ROS}.

• Spec.config.log_level: int = 30
Specifies the log level for the engine: {0: SILENT, 10: DEBUG, 20: INFO, 30: WARN, 40:
ERROR, 50: FATAL}

Return type SpecView

Returns API to get/set parameters.

property feedthroughs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of a feedthrough corresponding to registered eagerx.core.
register.outputs().

The mutable parameters are:

• Spec.feedthroughs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the received input message before passing it to the node’s
callback().

• Spec.feedthroughs.<name>.space: dict = None
This space defines the format of valid messages.

• Spec.feedthroughs.<name>.delay: float = 0.0
A non-negative simulated delay (seconds). This delay is ignored if simulate_delays = True in
the engine’s spec().

Return type SpecView

Returns API to get/set parameters.

property inputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.inputs().

The mutable parameters are:

• Spec.inputs.<name>.window: int = 1
A non-negative number that specifies the number of messages to pass to the node’s callback().
– window = 1: Only the last received input message.
– window = x > 1: The trailing last x received input messages.
– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• Spec.inputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the received input message before passing it to the node’s
callback().

• Spec.inputs.<name>.space: dict = None
This space defines the format of valid messages.

• Spec.inputs.<name>.delay: float = 0.0
A non-negative simulated delay (seconds). This delay is ignored if simulate_delays = True in
the engine’s spec().

2.3. API Reference 39

EAGERx Documentation, Release 0.1.40

• Spec.inputs.<name>.skip: bool = False
Skip the dependency on this input during the first call to the node’s callback(). May be neces-
sary to ensure that the connected graph is directed and acyclic.

Return type SpecView

Returns API to get/set parameters.

property outputs: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.outputs().

The mutable parameters are:

• Spec.outputs.<name>.processor: ProcessorSpec = None
A processor that preprocesses the output message, returned by callback(), before publishing it.

• Spec.outputs.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

property states: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.states().

The mutable parameters are:

• Spec.states.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

property targets: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.targets().

The mutable parameters are:

• Spec.targets.<name>.processor: ProcessorSpec = None
A processor that preprocesses the received state message before passing it to the node’s
callback().

Return type SpecView

Returns API to get/set parameters.

40 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

Object

class eagerx.core.specs.ObjectSpec(params)
A parameter specification of an object.

gui(engine_cls, interactive=True, resolution=None, filename=None)
Opens a graphical user interface of the object’s engine implementation.

Note: Requires eagerx-gui:

pip3 install eagerx-gui

Parameters

• engine_cls (Type[Engine]) – The class engine (not instance!) that was used to register
the engine implementation (e.g. “PybulletEngine”).

• interactive (Optional[bool]) – If True, an interactive application is launched. Other-
wise, an RGB render of the GUI is returned. This could be useful when using a headless
machine.

• resolution (Optional[List[int]]) – Specifies the resolution of the returned render
when interactive is False. If interactive is True, this argument is ignored.

• filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this
name. If interactive is True, this argument is ignored.

Return type Optional[ndarray]

Returns RGB render of the GUI if interactive is False.

property actuators: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.actuators().

The mutable parameters are:

• Spec.actuators.<name>.rate: float = 1.0
Rate (Hz) at which the actuator’s callback() is called.

• Spec.actuators.<name>.window: int = 1
A non-negative number that specifies the number of messages to pass to the node’s callback().
– window = 1: Only the last received input message.
– window = x > 1: The trailing last x received input messages.
– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• Spec.actuators.<name>.space: dict = None
This space defines the format of valid messages.

• Spec.actuators.<name>.delay: float = 0.0
A non-negative simulated delay (seconds). This delay is ignored if simulate_delays = True in
the engine’s spec().

2.3. API Reference 41

EAGERx Documentation, Release 0.1.40

• Spec.actuators.<name>.skip: bool = False
Skip the dependency on this input during the first call to the node’s callback(). May be neces-
sary to ensure that the connected graph is directed and acyclic.

Return type SpecView

Returns API to get/set parameters.

property config: eagerx.core.view.SpecView

Provides an API to set/get the parameters to initialize.

The default parameters are:

• Additional parameters registered with the eagerx.core.register.config() decorator.

• Spec.config.name: str
User specified unique object name.

• Spec.config.actuators: list
List with selected actuators. Must be a subset of the registered eagerx.core.register.
actuators().

• Spec.config.sensors: list
List with selected sensors. Must be a subset of the registered eagerx.core.register.
sensors().

• Spec.config.states: list
List with selected engine_states. Must be a subset of the registered eagerx.core.register.
engine_states().

Return type SpecView

Returns API to get/set parameters.

property engine: eagerx.core.view.SpecView

Provides an API to set/get the parameters of an engine-specific implementation.

The mutable parameters are:

• Arguments (excluding spec) of the selected engine’s add_object() method.

• Spec.engine.states.<name>: EngineState
Link an EngineState to a registered state with eagerx.core.register.states().

Return type SpecView

Returns API to get/set parameters.

property sensors: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.sensors().

The mutable parameters are:

• Spec.sensors.<name>.rate: float = 1.0
Rate (Hz) at which the sensor’s callback() is called.

42 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

• Spec.sensors.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

property states: eagerx.core.view.SpecView

Provides an API to set/get the parameters of registered eagerx.core.register.engine_states().

The mutable parameters are:

• Spec.states.<name>.space: dict = None
This space defines the format of valid messages.

Return type SpecView

Returns API to get/set parameters.

2.3.8 Graph

Graph

class eagerx.core.graph.Graph(state)
The Graph API allows users to form a graph of connected nodes and objects.

add(entities)
Add nodes/objects to the graph.

Parameters entities (Union[NodeSpec, ResetNodeSpec, ObjectSpec, EngineSpec,
List[Union[NodeSpec, ResetNodeSpec, ObjectSpec, EngineSpec]]]) – Nodes/objects
to add.

Return type None

add_component(entry=None, action=None, observation=None)
Selects an available component entry (e.g. input, output, etc. . .) that was not already selected.

Parameters

• entry (Optional[SpecView]) – Selects the entry, so that it can be connected.

• action (Optional[str]) – Adds a disconnected action entry.

• observation (Optional[str]) – Adds a disconnected observation entry.

Return type None

connect(source=None, target=None, action=None, observation=None, window=None, delay=None,
skip=None)

Connect an action/source (i.e. node/object component) to an observation/target (i.e. node/object compo-
nent).

Parameters

• source (Optional[SpecView]) – Compatible source types are outputs, sensors, and
states.

• target (Optional[SpecView]) – Compatible target types are inputs, actuators,
targets, and feedthroughs.

2.3. API Reference 43

EAGERx Documentation, Release 0.1.40

• action (Optional[str]) – Name of the action to connect (and add).

• observation (Optional[str]) – Name of the observation to connect (and add).

• window (Optional[int]) – A non-negative number that specifies the number of messages
to pass to the node’s callback().

– window = 1: Only the last received input message.

– window = x > 1: The trailing last x received input messages.

– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is
ignored if simulate_delays = True in the engine’s spec().

• skip (Optional[bool]) – Skip the dependency on this input during the first call to the
node’s callback(). May be necessary to ensure that the connected graph is directed and
acyclic.

Return type None

classmethod create(nodes=None, objects=None)
Create a new graph with nodes and objects.

Parameters

• nodes (Union[NodeSpec, ResetNodeSpec, List[Union[NodeSpec, ResetNodeSpec]],
None]) – Nodes to add.

• objects (Union[ObjectSpec, List[ObjectSpec], None]) – Objects to add.

Return type Graph

Returns The graph.

disconnect(source=None, target=None, action=None, observation=None, remove=False)
Disconnects a source/action from a target/observation.

Parameters

• source (Optional[SpecView]) – Compatible source types are outputs, sensors, and
states.

• target (Optional[SpecView]) – Compatible target types are inputs, actuators,
targets, and feedthroughs.

• action (Optional[str]) – Name of the action to connect (and add).

• observation (Optional[str]) – Name of the observation to connect (and add).

• remove (bool) – Flag to also remove observations/actions if they are left disconnected after
the entry was disconnected. Actions are only removed if they are completely disconnected.

Return type None

get(entry=None, action=None, observation=None, parameter=None)
Fetches the parameters of a node/object/action/observation.

Parameters

• entry (Union[SpecView, EntitySpec, None]) – The entry whose parameters are fetched.

44 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

• action (Optional[str]) – Action name whose parameters are fetched.

• observation (Optional[str]) – observation name whose parameters are fetched.

• parameter (Optional[str]) – If only a single parameter needs to be fetched.

Return type Any

Returns Parameters

get_spec(name)
Get Spec from the graph

Parameters name (str) – Name

Return type EntitySpec

Returns The specification of the entity.

gui(interactive=True, resolution=None, filename=None)
Opens a graphical user interface of the graph.

Note: Requires eagerx-gui:

pip3 install eagerx-gui

Parameters

• interactive (Optional[bool]) – If True, an interactive application is launched. Other-
wise, an RGB render of the GUI is returned. This could be useful when using a headless
machine.

• resolution (Optional[List[int]]) – Specifies the resolution of the returned render
when interactive is False. If interactive is True, this argument is ignored.

• filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this
name. If interactive is True, this argument is ignored.

Return type Optional[ndarray]

Returns RGB render of the GUI if interactive is False.

is_valid(plot=True)
Checks the validity of the graph.

• Checks if all selected actions, observations, inputs, actuators, targets, and feedthroughs are
connected.

• Checks if the graph is directed and acyclic.

Parameters plot – Flag to plot the graph. Can be helpful to identify cycles in the graph that
break the required acyclic property.

Return type bool

Returns flag that specifies the validity of the graph.

2.3. API Reference 45

EAGERx Documentation, Release 0.1.40

classmethod load(file)
Loads the graph state.

The state is loaded in .yaml format and contains the state of every added node, object, action, and observa-
tion and the connections between them.

Parameters file (str) – A string giving the name (and the file if the file isn’t in the current
working directory).

reload()

Reloads (ie imports) all entities in the graph.

remove(names, remove=False)
Removes nodes/objects from the graph.

• First, all associated connections are disconnected.

• Then, removes the node/object.

Parameters

• names (Union[str, EntitySpec, List[Union[str, EntitySpec]]]) – Either the name
or spec of the node/object that is to be removed.

• remove (bool) – Flag to also remove observations/actions if they are left disconnected
after the node/object was removed. Actions are only removed if they are completely dis-
connected.

Return type List

Returns list of disconnected connections.

remove_component(entry=None, action=None, observation=None, remove=False)
Deselects a component entry (e.g. input, output, etc. . .) that was selected.

• First, all associated connections are disconnected.

• Then, deselects the component entry. For feedthroughs, it will also remove the corresponding output
entry.

Parameters

• entry (Optional[SpecView]) – Deselects the entry.

• action (Optional[str]) – Removes an action entry.

• observation (Optional[str]) – Removes an observation entry

• remove (bool) – Flag to also remove observations/actions if they are left disconnected after
the entry was removed. Actions are only removed if they are completely disconnected.

Return type None

rename(new, action=None, observation=None)
Renames an action/observation.

Parameters

• new (str) – New name.

• action (Optional[str]) – Old action name.

• observation (Optional[str]) – Old observation name.

46 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

Return type None

render(source, rate, processor=None, window=None, delay=None, skip=None, render_cls=None,
process=0, encoding='bgr', **kwargs)

Visualize rgb images produced by a node/sensor in the graph. The rgb images must be of dtype=uint8 and
shape=(height, width, 3).

Parameters

• source (SpecView) – Compatible source types are outputs and sensors.

• rate (float) – The rate (Hz) at which to render the images.

• processor (Optional[ProcessorSpec]) – Processes the received message before pass-
ing it to the target node’s callback().

• window (Optional[int]) – A non-negative number that specifies the number of messages
to pass to the node’s callback().

– window = 1: Only the last received input message.

– window = x > 1: The trailing last x received input messages.

– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is
ignored if simulate_delays = True in the engine’s spec().

• skip (Optional[bool]) – Skip the dependency on this input during the first call to the
node’s callback(). May be necessary to ensure that the connected graph is directed and
acyclic.

• render_cls (Optional[Type[Node]]) – The Node of the render node. By default, it uses
the standard RenderNode. In Google colab, the ColabRender class is used.

• process (int) – Process in which the render node is launched. See process for all op-
tions.

• encoding (str) – The encoding (bgr or rgb) of the render source.

• kwargs – Optional arguments required by the render node.

save(file)
Saves the graph state.

The state is saved in .yaml format and contains the state of every added node, object, action, and observation
and the connections between them.

Parameters file (str) – A string giving the name (and the file if the file isn’t in the current
working directory).

Return type None

set(mapping, entry=None, action=None, observation=None, parameter=None)
Sets the parameters of a node/object/action/observation.

Parameters

• mapping (Any) – Either a mapping with key = parameter, or a single value that corresponds
to the optional parameter argument.

2.3. API Reference 47

EAGERx Documentation, Release 0.1.40

• entry (Optional[SpecView]) – The entry whose parameters are mutated.

• action (Optional[str]) – Action name whose parameters are mutated.

• observation (Optional[str]) – observation name whose parameters are mutated.

• parameter (Optional[str]) – If only a single value needs to be set. See documentation
for mapping.

Return type None

Engine Graph

class eagerx.core.graph_engine.EngineGraph(state)

add(nodes)
Add nodes to the graph.

Parameters nodes (Union[NodeSpec, List[NodeSpec]]) – Nodes/objects to add.

Return type None

add_component(entry)
Selects an available component entry (e.g. input, output, etc. . .) that was not already selected.

Parameters entry (SpecView) – Selects the entry, so that it can be connected.

Return type None

connect(source=None, target=None, actuator=None, sensor=None, window=None, delay=None,
skip=None)

Connect an actuator/source to a sensor/target.

Parameters

• source (Optional[SpecView]) – Compatible source type is outputs.

• target (Optional[SpecView]) – Compatible target type is inputs.

• actuator (Optional[str]) – String name of the actuator.

• sensor (Optional[str]) – String name of the sensor.

• window (Optional[int]) – A non-negative number that specifies the number of messages
to pass to the node’s callback().

– window = 1: Only the last received input message.

– window = x > 1: The trailing last x received input messages.

– window = 0: All input messages received since the last call to the node’s callback().

Note: With window = 0, the number of input messages may vary and can even be zero.

• delay (Optional[float]) – A non-negative simulated delay (seconds). This delay is
ignored if simulate_delays = True in the engine’s spec().

• skip (Optional[bool]) – Skip the dependency on this input during the first call to the
node’s callback(). May be necessary to ensure that the connected graph is directed and
acyclic.

Return type None

48 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

disconnect(source=None, target=None, actuator=None, sensor=None)
Disconnect an actuator/source from a sensor/target.

Parameters

• source (Optional[SpecView]) – Compatible source type is outputs.

• target (Optional[SpecView]) – Compatible target type is inputs.

• actuator (Optional[str]) – String name of the actuator.

• sensor (Optional[str]) – String name of the sensor.

Return type None

get(entry=None, actuator=None, sensor=None, parameter=None)
Fetches the parameters of a node/actuator/sensor.

Parameters

• entry (Union[SpecView, EntitySpec, None]) – The entry whose parameters are fetched.

• actuator (Optional[str]) – Actuator name whose parameters are fetched.

• sensor (Optional[str]) – Sensor name whose parameters are fetched.

• parameter (Optional[str]) – If only a single parameter needs to be fetched.

Return type Any

Returns Parameters

get_spec(name)
Get Spec from the graph

Parameters name (str) – Name

Return type NodeSpec

Returns The specification of the entity.

gui(interactive=True, resolution=None, filename=None)
Opens a graphical user interface of the graph.

Note: Requires eagerx-gui:

pip3 install eagerx-gui

Parameters

• interactive (Optional[bool]) – If True, an interactive application is launched. Other-
wise, an RGB render of the GUI is returned. This could be useful when using a headless
machine.

• resolution (Optional[List[int]]) – Specifies the resolution of the returned render
when interactive is False. If interactive is True, this argument is ignored.

• filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this
name. If interactive is True, this argument is ignored.

Return type Optional[ndarray]

Returns RGB render of the GUI if interactive is False.

2.3. API Reference 49

EAGERx Documentation, Release 0.1.40

is_valid(plot=True)
Checks the validity of the graph.

• Checks if all selected inputs are connected.

• Checks if the graph is directed and acyclic.

Parameters plot – Flag to plot the graph. Can be helpful to identify cycles in the graph that
break the required acyclic property.

Return type bool

Returns flag that specifies the validity of the graph.

register()

Returns the nodes that make up this subgraph, and their relation to the registered actuators and sensors.

remove(names)
Removes a node from the graph.

• First, all associated connections are disconnected.

• Then, removes the nodes/objects.

Parameters names (Union[str, EntitySpec, List[Union[str, EntitySpec]]]) – Either the
name or spec of the node/object that is to be removed.

Return type None

remove_component(entry)
Deselects a component entry (e.g. input, output, etc. . .) that was selected.

• First, all associated connections are disconnected.

• Then, deselects the component entry.

Parameters entry (SpecView) – Deselects the entry.

Return type None

set(mapping, entry, parameter=None)
Sets the parameters of a node.

Parameters

• mapping (Any) – Either a mapping with key = parameter, or a single value that corresponds
to the optional parameter argument.

• entry (Optional[SpecView]) – The entry whose parameters are mutated.

• parameter (Optional[str]) – If only a single value needs to be set. See documentation
for mapping.

Return type None

50 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

2.3.9 Environment

class eagerx.core.env.BaseEnv(name, rate, graph, engine, backend=None, force_start=True,
render_mode=None)

The base class for all EAGERx environments that follows the OpenAI gym’s Env API.

• Be sure to call super().__init__() inside the subclass’ constructor with the required arguments (name,
graph, etc. . .).

A subclass should implement the following methods:

• step(): Be sure to call _step() inside this method to perform the step.

• reset(): Be sure to call _reset() inside this method to perform the reset.

A subclass can optionally overwrite the following properties:

• observation_space: Per default, the observations, registered in the graph, are taken.

• action_space: Per default, the actions, registered in the graph, are taken.

__init__(name, rate, graph, engine, backend=None, force_start=True, render_mode=None)
Initializes an environment with EAGERx dynamics.

Parameters

• name (str) – The name of the environment. Everything related to this environment (pa-
rameters, topics, nodes, etc. . .) will be registered under namespace: “/name”.

• rate (float) – The rate (Hz) at which the environment will run.

• graph (Graph) – The graph consisting of nodes and objects that describe the environment’s
dynamics.

• engine (EngineSpec) – The physics engine that will govern the environment’s dynamics.
For every Object in the graph, the corresponding engine implementations is chosen.

• backend (Optional[BackendSpec]) – The backend that will govern the communication
for this environment. Per default, the SingleProcess backend is used.

• force_start (bool) – If there already exists an environment with the same name, the
existing environment is first shutdown by calling the BaseEnv()method before initializing
this environment.

• render_mode (Optional[str]) – The render mode that will be used for rendering the
environment.

_reset(states)
A private method that should be called within reset().

Parameters states (Dict) – The desired states to be set before the start an episode. May also
be an (empty) subset of registered states if not all states require a reset.

Return type Dict

Returns The initial observation.

_step(action)
A private method that should be called within step().

Parameters action (Dict) – The actions to be applied in the next timestep. Should include all
registered actions.

Return type Dict

2.3. API Reference 51

EAGERx Documentation, Release 0.1.40

Returns The observation of the current timestep that comply with the graph’s observation space.

close()

A method to stop rendering (i.e. close the render window).

A bool message to topic address “name /env/render/toggle”, which toggles the rendering on/off.

Note: Depending on the source node that is producing the images that are rendered, images may still be
produced, even when the render window is not visible. This may add computational overhead and influence
the run speed.

Optionally, users may subscribe to topic address “name /env/render/toggle” in the node that is producing
the images to stop the production and output empty images instead.

gui(interactive=True, resolution=None, filename=None)
Opens a graphical user interface of the graph.

Note: Requires eagerx-gui:

pip3 install eagerx-gui

Parameters

• interactive (Optional[bool]) – If True, an interactive application is launched. Other-
wise, an RGB render of the GUI is returned. This could be useful when using a headless
machine.

• resolution (Optional[List[int]]) – Specifies the resolution of the returned render
when interactive is False. If interactive is True, this argument is ignored.

• filename (Optional[str]) – If provided, the GUI is rendered to an svg file with this
name. If interactive is True, this argument is ignored.

Return type Optional[ndarray]

Returns RGB render of the GUI if interactive is False.

classmethod load(name, file, backend=None, force_start=True)
Loads an environment corresponding to the graph state.

Parameters

• name (str) – The name of the environment. Everything related to this environment (pa-
rameters, topics, nodes, etc. . .) will be registered under namespace: “/name”.

• file (str) – A string giving the name (and the file if the file isn’t in the current working
directory).

• backend (Optional[BackendSpec]) – The backend that will govern the communication
for this environment. Per default, the SingleProcess backend is used.

• force_start (bool) – If there already exists an environment with the same name, the
existing environment is first shutdown by calling the BaseEnv()method before initializing
this environment.

52 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

render()

A method to start rendering (i.e. open the render window).

A bool message to topic address “name /env/render/toggle”, which toggles the rendering on/off. :rtype:
Optional[ndarray] :returns: Optionally, a rgb_array if env.mode=rgb_array.

abstract reset(seed=None, options=None)
An abstract method that resets the environment to an initial state and returns an initial observation.

Note:

To reset the graph, the private method _reset() must be called with the desired initial states. The
spaces of all states (of Objects and Nodes in the graph) are stored in

state_space().

Return type Tuple[Union[Dict, ndarray], Dict]

Returns The initial observation that is complies with the observation_space().

save(file)
Saves the (engine-specific) graph state, that includes the engine & environment nodes.

The state is saved in .yaml format and contains the state of every added node, action, and observation and
the connections between them.

Parameters file (str) – A string giving the name (and the file if the file isn’t in the current
working directory).

Return type None

shutdown()

A method to shutdown the environment.

• Clear the parameters on the ROS parameter under the namespace /name.

• Close nodes (i.e. release resources and perform close procedure).

• Unregister topics that supplied the I/O communication between nodes.

abstract step(action)
An abstract method that runs one timestep of the environment’s dynamics.

Note: To run one timestep of the graph dynamics (that essentially define the environment dynamics), this
method must call the private method _step() with the actions that comply with _action_space.

When the end of an episode is reached, the user is responsible for calling reset() to reset this environ-
ment’s state.

Params action Actions provided by the agent. Should comply with the action_space().

Return type Tuple[Union[Dict, ndarray], float, bool, bool, Dict]

Returns

A tuple (observation, reward, terminated, truncated, info).

• observation: Observations of the current timestep that comply with the
observation_space().

2.3. API Reference 53

EAGERx Documentation, Release 0.1.40

• reward: amount of reward returned after previous action

• terminated: whether the episode has ended due to a terminal state, in which case further step() calls will
return undefined results

• truncated: whether the episode has ended due to a time limit, in which case further step() calls will
return undefined results

• info: contains auxiliary diagnostic information (helpful for debugging, and sometimes
learning)

property _action_space: gymnasium.spaces.dict.Dict

Infers the action space from the space of every action.

This space defines the format of valid actions.

Return type Dict

Returns A dictionary with key = action and value = Space.

property _observation_space: gymnasium.spaces.dict.Dict

Infers the observation space from the space of every observation.

This space defines the format of valid observations.

Note: Observations with window = 0 are excluded from the observation space. For observations with
window > 1, the observation space is duplicated window times.

Return type Dict

Returns A dictionary with key = observation and value = Space.

property action_space: gymnasium.spaces.space.Space

The Space object corresponding to valid actions

Per default, the action space of all registered actions in the graph is used.

Return type Space

property np_random: numpy.random._generator.Generator

Returns the environment’s internal _np_random that if not set will initialise with a random seed.

Returns: Instances of np.random.Generator

Return type Generator

property observation_space: gymnasium.spaces.space.Space

The Space object corresponding to valid observations.

Per default, the observation space of all registered observations in the graph is used.

Return type Space

property state_space: gymnasium.spaces.dict.Dict

Infers the state space from the space of every state.

This space defines the format of valid states that can be set before the start of an episode.

Return type Dict

Returns A dictionary with key = state and value = Space.

54 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

2.3.10 Utilities

Space

class eagerx.core.space.Space(low=None, high=None, shape=None, dtype=<class 'numpy.float32'>,
seed=None)

A (possibly unbounded) space in R^n. Specifically, a Space represents the Cartesian product of n closed intervals.
Each interval has the form of one of [a, b], (-oo, b], [a, oo), or (-oo, oo).

There are two common use cases:

• Identical bound for each dimension::

>>> Space(low=-1.0, high=2.0, shape=(3, 4), dtype="float32")
Space(3, 4)

• Independent bound for each dimension::

>>> Space(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=
→˓"float32")
Space(2,)

contains(x)
Return boolean specifying if x is a valid member of this space :param x: array to check.

Return type bool

contains_space(space)
Return boolean specifying if space is contained in this space. Low and high of the space must exactly match
(instead of lying within the bounds) to return True :type space: Union[Space, Dict] :param space: Space
that is to be checked.

Return type bool

classmethod from_dict(d)
Create a space from a dict.

Parameters d (Dict) – Dict containing the arguments to initialize the space

Return type Space

Returns The space.

from_jsonable(sample_n)
Convert a JSONable data type to a batch of samples from this space.

sample()

Randomly sample an element of this space. Can be uniform or non-uniform sampling based on boundedness
of space.

Return type ndarray

seed(seed=None)
Seed the PRNG of this space and possibly the PRNGs of subspaces.

Return type list[int]

2.3. API Reference 55

EAGERx Documentation, Release 0.1.40

to_dict()

Convert the space to a dict representation

Return type Dict

Returns Dict representation of the space.

to_jsonable(sample_n)
Convert a batch of samples from this space to a JSONable data type.

property is_fully_defined: bool

Check if space is fully defined (i.e. low, high, shape and dtype are all provided). :rtype: bool :return: flag

property is_np_flattenable

Checks whether this space can be flattened.

property np_random: numpy.random._generator.Generator

Lazily seed the PRNG since this is expensive and only needed if sampling from this space.

As seed() is not guaranteed to set the _np_random for particular seeds. We add a check after seed() to
set a new random number generator.

Return type Generator

property shape: tuple[int, ...] | None

Return the shape of the space as an immutable property.

Process

class eagerx.core.constants.process

ENGINE: int = 2

Spawn a node in the process of the engine. If an EngineNode requires direct access to the simulator,
config, and engine_config, it must be spawned in the same process as the engine.

ENVIRONMENT: int = 1

Spawn the node/engine in the process of the environment.

EXTERNAL: int = 3

Spawn the node/engine in a separate process. This process is not spawned by the environment. Instead, the
user is responsible for running the executable script with the appropriate arguments. This allows nodes to
run distributed.

NEW_PROCESS: int = 0

Spawn the node/engine in a separate process. Allows parallelization, but increases communication overhead
due to the (de)serialization of messages.

Register

class eagerx.core.register.inputs(**inputs)
A decorator to register the inputs to a callback().

The callback() method should be decorated.

Parameters inputs (Any) – The input’s msg_type class.

Return type Callable

56 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

class eagerx.core.register.outputs(**outputs)
A decorator to register the outputs of a callback().

The callback() method should be decorated.

Parameters outputs – The output’s msg_type class.

Return type Callable

class eagerx.core.register.states(**states)
A decorator to register the states for a reset().

The reset() method should be decorated.

Parameters outputs – The state’s msg_type class.

Return type Callable

class eagerx.core.register.targets(**targets)
A decorator to register the targets of a callback().

The callback() method should be decorated.

Parameters targets – The target’s msg_type class.

Return type Callable

class eagerx.core.register.sensors(**sensors)
A decorator to register the sensors of an Object.

The agnostic() method should be decorated.

Parameters sensors – The sensor’s msg_type class.

Return type Callable

class eagerx.core.register.actuators(**actuators)
A decorator to register the actuators of an Object.

The agnostic() method should be decorated.

Parameters actuators – The actuator’s msg_type class.

Return type Callable

class eagerx.core.register.engine_states(**engine_states)
A decorator to register the engine states of an Object.

The agnostic() method should be decorated.

Parameters engine_states – The engine state’s msg_type class.

Return type Callable

class eagerx.core.register.engine(engine_cls, entity=None)
A decorator to register an engine implementation of an Object.

Note: In our running example, the example_engine() method would be decorated.

Parameters

• engine_cls (Engine) – The Engine’s subclass (not the baseclass Engine).

2.3. API Reference 57

EAGERx Documentation, Release 0.1.40

• entity – The entity that corresponds to the engine implementation. If left unspecified, the
engine is registered to the class that owns the method.

Return type Callable

Message

class eagerx.utils.utils.Msg(info: eagerx.utils.utils.Info, msgs: List[Any])
A dataclass representing a (windowed) input that is passed to callback().

info: eagerx.utils.utils.Info

Info on the received messages in msgs.

msgs: List[Any]

The received messages with indexing msgs[-1] being the most recent message and msgs[0] the oldest.

class eagerx.utils.utils.Info(name: Optional[str] = None, node_tick: Optional[int] = None, rate_in:
Optional[float] = None, t_node: Optional[List[eagerx.utils.utils.Stamp]] =
None, t_in: Optional[List[eagerx.utils.utils.Stamp]] = None, done:
Optional[bool] = None)

A dataclass containing info about the received messages in msgs.

name: str

Name of the registered input.

node_tick: int

Number of times callback() has been called since the last reset.

rate_in: float

Rate (Hz) of the input.

t_in: List[eagerx.utils.utils.Stamp]

Simulated timestamp that states at what time the message was received according to rate_in and seq.

t_node: List[eagerx.utils.utils.Stamp]

Simulated timestamp that states during which cycle the message was received since the last reset according
to rate and node_tick .

class eagerx.utils.utils.Stamp(seq: Optional[int] = None, sc: Optional[float] = None, wc: Optional[float]
= None)

A dataclass for timestamping received messages.

sc: float

Timestamp according to the simulated clock (seconds). This time is scaled by the real-time factor if > 0.

seq: int

Sequence number of received message.

wc: float

Timestamp according to the wall clock (seconds).

58 Chapter 2. Engines

EAGERx Documentation, Release 0.1.40

2.4 Code Examples

Below you can find a code example of environment creation and training using Stable-Baselines3. To run this code,
you should install eagerx_tutorials, which can be done by running:

pip3 install eagerx_tutorials

Detailed explanation of the code can be found in this Colab tutorial.

import eagerx
from eagerx.backends.single_process import SingleProcess
from eagerx.wrappers import Flatten
from eagerx_tutorials.pendulum.objects import Pendulum
from eagerx_ode.engine import OdeEngine

import stable_baselines3 as sb3
import numpy as np
from typing import Dict

class PendulumEnv(eagerx.BaseEnv):
def __init__(self, name: str, rate: float, graph: eagerx.Graph, engine: eagerx.specs.

→˓EngineSpec,
backend: eagerx.specs.BackendSpec):

self.max_steps = 100
self.steps = None
super().__init__(name, rate, graph, engine, backend, force_start=True)

def step(self, action: Dict):
observation = self._step(action)
self.steps += 1

Calculate reward and check if the episode is terminated
th = observation["angle"][0]
thdot = observation["angular_velocity"][0]
u = float(action["voltage"])
th -= 2 * np.pi * np.floor((th + np.pi) / (2 * np.pi))
cost = th ** 2 + 0.1 * thdot ** 2 + 0.01 * u ** 2
truncated = self.steps > self.max_steps
terminated = False

Render
if self.render_mode == "human":

self.render()
return observation, -cost, terminated, truncated, {}

def reset(self, seed=None, options=None) -> Dict:
states = self.state_space.sample()
observation = self._reset(states)
self.steps = 0
Render
if self.render_mode == "human":

self.render()
(continues on next page)

2.4. Code Examples 59

https://stable-baselines3.readthedocs.io/en/master/
https://github.com/eager-dev/eagerx_tutorials
https://colab.research.google.com/github/eager-dev/eagerx_tutorials/blob/master/tutorials/pendulum/1_environment_creation.ipynb

EAGERx Documentation, Release 0.1.40

(continued from previous page)

return observation, {}

if __name__ == "__main__":
rate = 30.0

pendulum = Pendulum.make("pendulum", actuators=["u"], sensors=["theta", "theta_dot"],
→˓ states=["model_state"])

graph = eagerx.Graph.create()
graph.add(pendulum)
graph.connect(action="voltage", target=pendulum.actuators.u)
graph.connect(source=pendulum.sensors.theta, observation="angle")
graph.connect(source=pendulum.sensors.theta_dot, observation="angular_velocity")

engine = OdeEngine.make(rate=rate)
backend = SingleProcess.make()

env = PendulumEnv(name="PendulumEnv", rate=rate, graph=graph, engine=engine,␣
→˓backend=backend)

env = Flatten(env)

model = sb3.SAC("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=int(150 * rate))

env.shutdown()

2.5 Troubleshooting

Here we list commonly encountered problems and effective methods for debugging.

• When developing, users are advised to select the SingleProcess Backend . Other backends, such as the Ros1
Backend can make debugging unnecessarily hard due to their distributed capabilities. Switch to multi-processing
and distributed computing once you have a stable implementation.

• If you must debug using the Ros1 Backend , then you are advised to launch all nodes in the ENVIRONMENT
process. See process for more info.

• Live-plotting is currently only supported when the Ros1 Backend is selected.

• To run your code using the Ros1 Backend from within PyCharm, make sure to modify your launcher file as
described here. This will also allow you to attach a debugger and set breakpoints. Instructions for several other
IDEs are also covered in the provided link.

• Using eagerx with anaconda can produce warnings (see below) when rendering or when using the GUI. This is
a known issue that is caused by the interaction of pyqtgraph (used in the GUI) and opencv (used for rendering)
with Qt libraries. Code seems not to break, so as a temporary fix, you are advised to suppress this error. Please
file a bug report if eagerx/opencv/gui functionality actually breaks.

QObject::moveToThread: Current thread (0x7fb6c4009eb0) is not the object's thread␣
→˓(0x7fb6c407cf40). Cannot move to
target thread (0x7fb6c4009eb0).

60 Chapter 2. Engines

http://wiki.ros.org/IDEs#PyCharm_.28community_edition.29

EAGERx Documentation, Release 0.1.40

2.6 Contributing to EAGERx

2.6.1 Creating a Package

In this section we will describe how to create an EAGERx package, in this case the eagerx_ode package. This pack-
age will contain the OdeEngine for simulating systems based on Ordinary Differential Equations (ODEs). Since the
OdeEngine will be a generic engine that can be useful for others, we will create a public repository for the OdeEngine.

Template

We will start by creating a new repository for this Python package, using the template that is available here.

Fig. 9: Screenshot of the EAGERx template package on Github.

As you can see, this template repository already contains some folders and files. The main benefit of using this template,
is that it facilitates to perform continuous integration and provides a clear code structure. Since the package is just a
Python package in the end, any other Python package structure could be used.

In our case, we create a new repository called eagerx_ode using this template. Since we want to create a package named
eagerx_ode and not eagerx_template, we do the following:

• Rename the folder eagerx_template to eagerx_ode.

• Update the PACKAGE_NAME variable in Makefile to be eagerx_ode instead of eagerx_template.

2.6. Contributing to EAGERx 61

https://github.com/eager-dev/eagerx_template
https://github.com/eager-dev/eagerx_ode

EAGERx Documentation, Release 0.1.40

Poetry

Next we will create a Python package using Poetry. If you are not familiar with Poetry, we recommend to check out
this article. It is a very convenient tool for package management. In the remainder of this section it is assumed that
Poetry is installed.

Next, we modify the pyproject.toml file to specify dependencies, add a short description, state the authors of the package
etc. . Here we specify scipy as dependencies, since we will be using scipy to perform the integration of the ODEs.
This results following pyproject.toml.

Now we are ready to start coding! Note that you can always add or update dependencies later using Poetry.

After adding the source code, installing the package is simple (from the root of the repository):

poetry install

Note: This will install the package and its dependencies in a virtual environment, see https://python-poetry.org/docs/
basic-usage/#using-your-virtual-environment.

Black

In the eagerx_template, we also make use of black. According to their docs:

“By using Black, you agree to cede control over minutiae of hand-formatting. In return, Black gives you speed, de-
terminism, and freedom from pycodestyle nagging about formatting. You will save time and mental energy for more
important matters.”

It allows to automatically format your code such that it satisfies the Black code style requirements and allows to check
these. In the eagerx_template this can be done as follows. First, we install the package using Poetry:

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we can format the code using black:

make codestyle

Also, we can check the code style:

make check-codestyle

Note: A number of Github workflows are present within the eagerx_template. One of them checks for code style using
Black. Therefore, when using this template for a public Github repository, don’t forget to run: make codestyle before
pushing your code.

62 Chapter 2. Engines

https://python-poetry.org/
https://nanthony007.medium.com/stop-using-pip-use-poetry-instead-db7164f4fc72
https://github.com/eager-dev/eagerx_template/blob/master/pyproject.toml
https://github.com/eager-dev/eagerx_ode/blob/master/pyproject.toml
https://python-poetry.org/docs/basic-usage/#using-your-virtual-environment
https://python-poetry.org/docs/basic-usage/#using-your-virtual-environment
https://black.readthedocs.io/en/stable/

EAGERx Documentation, Release 0.1.40

pytest

Also, the eagerx_template allows to easily add tests using pytest. You can add your own tests to the tests folder. Only
a dummy test is currently present here. You can run the test as follows (from the root of the repository):

First, we install the package using Poetry (if you haven’t done so yet):

poetry install

Next, we activate the poetry environment that is created during installation:

poetry shell

Now we run the tests:

make pytest

Note: A number of Github workflows are present within the eagerx_template. One of them checks if the tests are
passing. So before pushing your code, you can check whether the tests are passing locally by running make pytest.

Note: Be aware that in order to use a Node, EngineNode or any other enitity from eagerx.core.entities you
have created, that they should be imported before making them using make() with the corresponding ID. Therefore,
we advice to import these in the __init__.py as is done for example here.

2.6. Contributing to EAGERx 63

https://docs.pytest.org/
https://github.com/eager-dev/eagerx_template/tree/master/tests
https://github.com/eager-dev/eagerx_template/blob/master/tests/test_import.py
https://github.com/eager-dev/eagerx_ode/blob/master/eagerx_ode/__init__.py

EAGERx Documentation, Release 0.1.40

64 Chapter 2. Engines

CHAPTER

THREE

CITE EAGERX

If you are using EAGERx for your scientific publications, please cite:

@article{eagerx,
author = {van der Heijden, Bas and Luijkx, Jelle, and Ferranti, Laura and Kober,␣

→˓Jens and Babuska, Robert},
title = {EAGERx: Engine Agnostic Graph Environments for Robotics},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/eager-dev/eagerx}}

}

65

EAGERx Documentation, Release 0.1.40

66 Chapter 3. Cite EAGERx

CHAPTER

FOUR

MAINTAINERS

EAGERx is currently maintained by Bas van der Heijden (@bheijden) and Jelle Luijkx (@jelledouwe).

67

https://github.com/bheijden
https://github.com/jelledouwe

EAGERx Documentation, Release 0.1.40

68 Chapter 4. Maintainers

CHAPTER

FIVE

HOW TO CONTACT US

For any question, send an e-mail to eagerx.dev@gmail.com.

69

mailto:eagerx.dev@gmail.com

EAGERx Documentation, Release 0.1.40

70 Chapter 5. How to contact us

CHAPTER

SIX

ACKNOWLEDGEMENTS

EAGERx is funded by the OpenDR Horizon 2020 project.

71

https://opendr.eu/

EAGERx Documentation, Release 0.1.40

72 Chapter 6. Acknowledgements

INDEX

Symbols
__init__() (eagerx.core.env.BaseEnv method), 51
_action_space (eagerx.core.env.BaseEnv property), 54
_observation_space (eagerx.core.env.BaseEnv prop-

erty), 54
_reset() (eagerx.core.env.BaseEnv method), 51
_step() (eagerx.core.env.BaseEnv method), 51

A
action_space (eagerx.core.env.BaseEnv property), 54
actuators (class in eagerx.core.register), 57
actuators (eagerx.core.specs.ObjectSpec property), 41
add() (eagerx.core.graph.Graph method), 43
add() (eagerx.core.graph_engine.EngineGraph method),

48
add_component() (eagerx.core.graph.Graph method),

43
add_component() (ea-

gerx.core.graph_engine.EngineGraph method),
48

add_object() (eagerx.core.entities.Engine method), 17
add_object() (eagerx.core.specs.EngineSpec method),

34

B
Backend (class in eagerx.core.entities), 19
BACKEND (eagerx.core.entities.Backend property), 22
backend (eagerx.core.entities.Engine attribute), 18
backend (eagerx.core.entities.EngineNode attribute), 29
backend (eagerx.core.entities.EngineState attribute), 25
backend (eagerx.core.entities.Node attribute), 26
backend_type (eagerx.core.entities.Backend attribute),

22
BackendSpec (class in eagerx.core.specs), 36
BaseEnv (class in eagerx.core.env), 51

C
callback() (eagerx.core.entities.Engine method), 17
callback() (eagerx.core.entities.EngineNode method),

28
callback() (eagerx.core.entities.Node method), 25
callback() (eagerx.core.entities.ResetNode method), 31

close() (eagerx.core.env.BaseEnv method), 52
COLAB_SUPPORT (eagerx.core.entities.Backend prop-

erty), 22
color (eagerx.core.entities.EngineNode attribute), 29
color (eagerx.core.entities.Node attribute), 27
config (eagerx.core.specs.BackendSpec property), 36
config (eagerx.core.specs.EngineSpec property), 34
config (eagerx.core.specs.EngineStateSpec property),

36
config (eagerx.core.specs.NodeSpec property), 37
config (eagerx.core.specs.ObjectSpec property), 42
config (eagerx.core.specs.ProcessorSpec property), 36
config (eagerx.core.specs.ResetNodeSpec property), 38
connect() (eagerx.core.graph.Graph method), 43
connect() (eagerx.core.graph_engine.EngineGraph

method), 48
contains() (eagerx.core.space.Space method), 55
contains_space() (eagerx.core.space.Space method),

55
convert() (eagerx.core.entities.Processor method), 23
create() (eagerx.core.graph.Graph class method), 44

D
delete_param() (eagerx.core.entities.Backend

method), 20
deserialize_time() (eagerx.core.entities.Backend

static method), 20
disconnect() (eagerx.core.graph.Graph method), 44
disconnect() (eagerx.core.graph_engine.EngineGraph

method), 48
DISTRIBUTED_SUPPORT (eagerx.core.entities.Backend

property), 22

E
Engine (class in eagerx.core.entities), 16
engine (class in eagerx.core.register), 57
ENGINE (eagerx.core.constants.process attribute), 56
engine (eagerx.core.specs.ObjectSpec property), 42
engine_states (class in eagerx.core.register), 57
EngineGraph (class in eagerx.core.graph_engine), 48
EngineNode (class in eagerx.core.entities), 28
EngineSpec (class in eagerx.core.specs), 34

73

EAGERx Documentation, Release 0.1.40

EngineState (class in eagerx.core.entities), 24
EngineStateSpec (class in eagerx.core.specs), 36
entity_id (eagerx.core.entities.Backend attribute), 22
entity_id (eagerx.core.entities.Engine attribute), 18
entity_id (eagerx.core.entities.EngineNode attribute),

30
entity_id (eagerx.core.entities.Node attribute), 27
ENVIRONMENT (eagerx.core.constants.process attribute),

56
example_engine() (eagerx.core.entities.Object

method), 33
EXTERNAL (eagerx.core.constants.process attribute), 56

F
feedthroughs (eagerx.core.specs.ResetNodeSpec prop-

erty), 39
from_dict() (eagerx.core.space.Space class method),

55
from_jsonable() (eagerx.core.space.Space method),

55

G
get() (eagerx.core.graph.Graph method), 44
get() (eagerx.core.graph_engine.EngineGraph method),

49
get_param() (eagerx.core.entities.Backend method), 21
get_spec() (eagerx.core.graph.Graph method), 45
get_spec() (eagerx.core.graph_engine.EngineGraph

method), 49
Graph (class in eagerx.core.graph), 43
gui() (eagerx.core.env.BaseEnv method), 52
gui() (eagerx.core.graph.Graph method), 45
gui() (eagerx.core.graph_engine.EngineGraph method),

49
gui() (eagerx.core.specs.ObjectSpec method), 41

I
Info (class in eagerx.utils.utils), 58
info (eagerx.utils.utils.Msg attribute), 58
info() (eagerx.core.entities.Backend class method), 21
info() (eagerx.core.entities.Engine class method), 17
info() (eagerx.core.entities.EngineNode class method),

28
info() (eagerx.core.entities.EngineState class method),

24
info() (eagerx.core.entities.Node class method), 26
info() (eagerx.core.entities.Object class method), 33
info() (eagerx.core.entities.Processor class method), 23
info() (eagerx.core.entities.ResetNode class method),

31
initialize() (eagerx.core.entities.Backend method),

21
initialize() (eagerx.core.entities.Engine method), 17

initialize() (eagerx.core.entities.EngineNode
method), 28

initialize() (eagerx.core.entities.EngineState
method), 24

initialize() (eagerx.core.entities.Node method), 26
initialize() (eagerx.core.entities.Processor method),

23
initialize() (eagerx.core.entities.ResetNode method),

32
inputs (class in eagerx.core.register), 56
inputs (eagerx.core.entities.EngineNode attribute), 30
inputs (eagerx.core.entities.Node attribute), 27
inputs (eagerx.core.specs.EngineSpec property), 35
inputs (eagerx.core.specs.NodeSpec property), 37
inputs (eagerx.core.specs.ResetNodeSpec property), 39
is_fully_defined (eagerx.core.space.Space property),

56
is_np_flattenable (eagerx.core.space.Space prop-

erty), 56
is_valid() (eagerx.core.graph.Graph method), 45
is_valid() (eagerx.core.graph_engine.EngineGraph

method), 49

L
load() (eagerx.core.env.BaseEnv class method), 52
load() (eagerx.core.graph.Graph class method), 45
log_level (eagerx.core.entities.Backend attribute), 22
log_level (eagerx.core.entities.Engine attribute), 18
log_level (eagerx.core.entities.EngineNode attribute),

30
log_level (eagerx.core.entities.Node attribute), 27
log_memory (eagerx.core.entities.Engine attribute), 18
log_memory (eagerx.core.entities.EngineNode attribute),

30
log_memory (eagerx.core.entities.Node attribute), 27

M
main (eagerx.core.entities.Backend attribute), 22
make() (eagerx.core.entities.Backend class method), 21
make() (eagerx.core.entities.Engine class method), 17
make() (eagerx.core.entities.EngineNode class method),

29
make() (eagerx.core.entities.EngineState class method),

24
make() (eagerx.core.entities.Node class method), 26
make() (eagerx.core.entities.Object class method), 33
make() (eagerx.core.entities.Processor class method), 23
make() (eagerx.core.entities.ResetNode class method),

32
Msg (class in eagerx.utils.utils), 58
msgs (eagerx.utils.utils.Msg attribute), 58
MULTIPROCESSING_SUPPORT (ea-

gerx.core.entities.Backend property), 22

74 Index

EAGERx Documentation, Release 0.1.40

N
name (eagerx.core.entities.Engine attribute), 19
name (eagerx.core.entities.EngineNode attribute), 30
name (eagerx.core.entities.EngineState attribute), 25
name (eagerx.core.entities.Node attribute), 27
name (eagerx.utils.utils.Info attribute), 58
NEW_PROCESS (eagerx.core.constants.process attribute),

56
Node (class in eagerx.core.entities), 25
node_tick (eagerx.utils.utils.Info attribute), 58
NodeSpec (class in eagerx.core.specs), 37
now() (eagerx.core.entities.Backend method), 21
np_random (eagerx.core.env.BaseEnv property), 54
np_random (eagerx.core.space.Space property), 56
ns (eagerx.core.entities.Backend attribute), 23
ns (eagerx.core.entities.Engine attribute), 19
ns (eagerx.core.entities.EngineNode attribute), 30
ns (eagerx.core.entities.EngineState attribute), 25
ns (eagerx.core.entities.Node attribute), 27

O
Object (class in eagerx.core.entities), 33
objects (eagerx.core.entities.Engine attribute), 19
objects (eagerx.core.specs.EngineSpec property), 35
ObjectSpec (class in eagerx.core.specs), 41
observation_space (eagerx.core.env.BaseEnv prop-

erty), 54
outputs (class in eagerx.core.register), 56
outputs (eagerx.core.entities.EngineNode attribute), 30
outputs (eagerx.core.entities.Node attribute), 27
outputs (eagerx.core.specs.EngineSpec property), 35
outputs (eagerx.core.specs.NodeSpec property), 38
outputs (eagerx.core.specs.ResetNodeSpec property),

40

P
pre_reset() (eagerx.core.entities.Engine method), 17
process (class in eagerx.core.constants), 56
process (eagerx.core.entities.Engine attribute), 19
process (eagerx.core.entities.EngineNode attribute), 30
process (eagerx.core.entities.Node attribute), 27
Processor (class in eagerx.core.entities), 23
ProcessorSpec (class in eagerx.core.specs), 36
Publisher() (eagerx.core.entities.Backend method), 20

R
rate (eagerx.core.entities.Engine attribute), 19
rate (eagerx.core.entities.EngineNode attribute), 30
rate (eagerx.core.entities.Node attribute), 27
rate_in (eagerx.utils.utils.Info attribute), 58
real_time_factor (eagerx.core.entities.Backend

attribute), 23
real_time_factor (eagerx.core.entities.Engine at-

tribute), 19

real_time_factor (eagerx.core.entities.EngineNode
attribute), 30

real_time_factor (eagerx.core.entities.Node at-
tribute), 27

register() (eagerx.core.graph_engine.EngineGraph
method), 50

register_environment() (ea-
gerx.core.entities.Backend method), 21

reload() (eagerx.core.graph.Graph method), 46
remove() (eagerx.core.graph.Graph method), 46
remove() (eagerx.core.graph_engine.EngineGraph

method), 50
remove_component() (eagerx.core.graph.Graph

method), 46
remove_component() (ea-

gerx.core.graph_engine.EngineGraph method),
50

rename() (eagerx.core.graph.Graph method), 46
render() (eagerx.core.env.BaseEnv method), 52
render() (eagerx.core.graph.Graph method), 47
reset() (eagerx.core.entities.Engine method), 18
reset() (eagerx.core.entities.EngineNode method), 29
reset() (eagerx.core.entities.EngineState method), 24
reset() (eagerx.core.entities.Node method), 26
reset() (eagerx.core.entities.ResetNode method), 32
reset() (eagerx.core.env.BaseEnv method), 53
ResetNode (class in eagerx.core.entities), 31
ResetNodeSpec (class in eagerx.core.specs), 38

S
sample() (eagerx.core.space.Space method), 55
save() (eagerx.core.env.BaseEnv method), 53
save() (eagerx.core.graph.Graph method), 47
sc (eagerx.utils.utils.Stamp attribute), 58
seed() (eagerx.core.space.Space method), 55
sensors (class in eagerx.core.register), 57
sensors (eagerx.core.specs.ObjectSpec property), 42
seq (eagerx.utils.utils.Stamp attribute), 58
serialize_time() (eagerx.core.entities.Backend static

method), 21
set() (eagerx.core.graph.Graph method), 47
set() (eagerx.core.graph_engine.EngineGraph method),

50
set_delay() (eagerx.core.entities.EngineNode method),

29
set_delay() (eagerx.core.entities.Node method), 26
set_delay() (eagerx.core.entities.ResetNode method),

32
shape (eagerx.core.space.Space property), 56
shutdown() (eagerx.core.entities.Backend method), 22
shutdown() (eagerx.core.entities.Engine method), 18
shutdown() (eagerx.core.entities.EngineNode method),

29
shutdown() (eagerx.core.entities.Node method), 26

Index 75

EAGERx Documentation, Release 0.1.40

shutdown() (eagerx.core.entities.ResetNode method), 32
shutdown() (eagerx.core.env.BaseEnv method), 53
simulate_delays (eagerx.core.entities.Backend at-

tribute), 23
simulate_delays (eagerx.core.entities.Engine at-

tribute), 19
simulate_delays (eagerx.core.entities.EngineNode at-

tribute), 30
simulate_delays (eagerx.core.entities.Node attribute),

27
simulator (eagerx.core.entities.Engine attribute), 19
Space (class in eagerx.core.space), 55
spin() (eagerx.core.entities.Backend method), 22
Stamp (class in eagerx.utils.utils), 58
state_space (eagerx.core.env.BaseEnv property), 54
states (class in eagerx.core.register), 57
states (eagerx.core.entities.Engine attribute), 19
states (eagerx.core.entities.EngineNode attribute), 30
states (eagerx.core.entities.Node attribute), 27
states (eagerx.core.specs.EngineSpec property), 36
states (eagerx.core.specs.NodeSpec property), 38
states (eagerx.core.specs.ObjectSpec property), 43
states (eagerx.core.specs.ResetNodeSpec property), 40
step() (eagerx.core.env.BaseEnv method), 53
Subscriber() (eagerx.core.entities.Backend method),

20
sync (eagerx.core.entities.Backend attribute), 23
sync (eagerx.core.entities.Engine attribute), 19
sync (eagerx.core.entities.EngineNode attribute), 30
sync (eagerx.core.entities.Node attribute), 27

T
t_in (eagerx.utils.utils.Info attribute), 58
t_node (eagerx.utils.utils.Info attribute), 58
targets (class in eagerx.core.register), 57
targets (eagerx.core.specs.ResetNodeSpec property),

40
to_dict() (eagerx.core.space.Space method), 55
to_jsonable() (eagerx.core.space.Space method), 56

U
upload_params() (eagerx.core.entities.Backend

method), 22

W
wc (eagerx.utils.utils.Stamp attribute), 58

76 Index

	Video
	Engines
	Getting Started
	Installing EAGERx
	Installation using pip
	Installation from source
	Installation using Docker (with distributed support)
	GPU Dockers
	CPU Dockers

	Installation Using Conda (with distributed support)

	Extras: GUI
	Extras: training visualization
	Other Dependencies
	Poetry
	ROS1

	Tutorials
	Colabs
	Introduction to EAGERx
	1. Getting Started
	2. Advanced Usage

	Developer Tutorials
	1. Environment Creation and Training
	2. Reset and Step
	3. Space and Processors
	4. Nodes and Graph Validity
	5. Adding Engine Support for an Object
	6. Defining a new Object
	7. More Informative Rendering
	8. Reset Routines

	Visualizing your environment
	Graphical user interface
	Live-plotting
	Computation graph

	Distributed

	API Reference
	Engine
	Backend
	Processor
	Engine State
	Nodes
	Node
	Engine Node
	Reset Node

	Object
	Specs
	Engine
	Backend
	Processor
	Engine State
	Node
	Reset Node
	Object

	Graph
	Graph
	Engine Graph

	Environment
	Utilities
	Space
	Process
	Register
	Message

	Code Examples
	Troubleshooting
	Contributing to EAGERx
	Creating a Package
	Template
	Poetry
	Black
	pytest

	Cite EAGERx
	Maintainers
	How to contact us
	Acknowledgements
	Index

